高等数学(电子版).pdf

上传人:索**** 文档编号:76192263 上传时间:2023-03-08 格式:PDF 页数:50 大小:1.37MB
返回 下载 相关 举报
高等数学(电子版).pdf_第1页
第1页 / 共50页
高等数学(电子版).pdf_第2页
第2页 / 共50页
点击查看更多>>
资源描述

《高等数学(电子版).pdf》由会员分享,可在线阅读,更多相关《高等数学(电子版).pdf(50页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、目录一、函数与极限 2 1、集合的概念 2 2、常量与变量 3 2、函数 4 3、函数的简单性态 4 4、反函数 5 5、复合函数 6 6、初等函数 6 7、双曲函数及反双曲函数 7 8、数列的极限 8 9、函数的极限 9 10、函数极限的运算规则 11 一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。我们通常用大字拉丁字母A、B、C、表示集合,用小写拉丁字母a、b、c表示集合中的元素。如果 a 是集合

2、 A 中的元素,就说a 属于 A,记作:aA,否则就说a不属于 A,记作:aA。、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N、所有正整数组成的集合叫做正整数集。记作N+或 N+。、全体整数组成的集合叫做整数集。记作Z。、全体有理数组成的集合叫做有理数集。记作Q。、全体实数组成的集合叫做实数集。记作R。集合的表示方法、列举法:把集合的元素一一列举出来,并用“”括起来表示集合、描述法:用集合所有元素的共同特征来表示集合。集合间的基本关系、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就说 A、B 有包含关系,称集合A 为集合 B 的子集,记作

3、AB(或 BA)。相等:如何集合A 是集合 B 的子集,且集合B 是集合 A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合 B 相等,记作AB。、真子集:如何集合A 是集合 B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合B 的真子集。、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。、由上述集合之间的基本关系,可以得到下面的结论:、任何一个集合是它本身的子集。即AA、对于集合A、B、C,如果 A 是 B 的子集,B 是 C 的子集,则A 是 C 的子集。、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和

4、“等集”。集合的基本运算、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与 B 的并集。记作AB。(在求并集时,它们的公共元素在并集中只能出现一次。)即 AB x|xA,或 xB。、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与 B 的交集。记作AB。即 AB x|xA,且 xB。、补集:全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作 U。补集:对于一个集合A,由全集 U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U的补集。简称为集合A 的补集,记作CUA。即 CUA x|xU,

5、且 xA。集合中元素的个数、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。、用 card 来表示有限集中元素的个数。例如A a,b,c,则 card(A)=3。、一般地,对任意两个集合A、B,有card(A)+card(B)=card(A B)+card(A B)我的问题:1、学校里开运动会,设A x|x 是参加一百米跑的同学,B x|x 是参加二百米跑的同学,C x|x 是参加四百米跑的同学。学校规定,每个参加上述比赛的同学最多只能参加两项,请你用集合的运算说明这项规定,并解释以下集合运算的含义。、AB;、AB。2、在平面直角坐标系中,集合C(x,y)|y=x

6、 表示直线yx,从这个角度看,集合D=(x,y)|方程组:2x-y=1,x+4y=5 表示什么?集合C、D 之间有什么关系?请分别用集合语言和几何语言说明这种关系。3、已知集合A=x|1 x3,Bx|(x-1)(x-a)=0。试判断 B 是不是 A 的子集?是否存在实数a 使 AB 成立?4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?5、无限集合A1,2,3,4,n,B2,4,6,8,2n,你能设计一种比较这两个集合中元素个数多少的方法吗?2、常量与变量、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我

7、们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。注:在过程中还有一种量,它虽然是变化的,但是它的变化相对于所研究的对象是极其微小的,我们则把它看作常量。、变量的表示:如果变量的变化是连续的,则常用区间 来表示其变化范围。在数轴上来说,区间 是指介于某两点之间的线段上点的全体。区间的名称区间的满足的不等式区间的记号区间在数轴上的表示闭区间axba,b 开区间axb(a,b)半开区间axb或 ax b(a,b 或a,b)以上我们所述的都是有限区间,除此之外,还有无限区间:a,+):表示不小于a 的实数的全体,也可记为:ax+;(-,b):表示小于 b 的实数

8、的全体,也可记为:-xb;(-,+):表示全体实数,也可记为:-x+注:其中-和+,分别读作 负无穷大 和 正无穷大,它们不是数,仅仅是记号。、邻域:设 与 是两个实数,且 0.满足不等式x-的实数 x 的全体称为点 的 邻域,点 称为此邻域的中心,称为此邻域的半径。2、函数、函数的定义:如果当变量x 在其变化范围内任意取定一个数值时,量y 按照一定的法则f 总有确定的数值与它对应,则称y 是 x 的函数。变量 x 的变化范围叫做这个函数的定义域。通常 x 叫做 自变量,y叫做 函数值(或因变量),变量 y 的变化范围叫做这个函数的值域。注:为了表明y 是 x 的函数,我们用记号 y=f(x)

9、、y=F(x)等等来表示。这里的字母 f、F 表示 y 与 x 之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做 多值函数。这里我们只讨论单值函数。、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为 r、圆心在原点的圆的方程是:x2+y2=

10、r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:3、函数的简单性态、函数的有界性:如果对属于某一区间I的所有 x 值总有 f(x)M成立,其中 M是一个与 x 无关的常数,那么我们就称f(x)在区间 I 有界,否则便称无界。注:一个函数,如果在其整个定义域内有界,则称为有界函数例题:函数 cosx 在(-,+)内是有界的

11、.、函数的单调性:如果函数在区间(a,b)内随着 x 增大而增大,即:对于(a,b)内任意两点x1及 x2,当 x1x2时,有,则称函数在区间(a,b)内是 单调增加 的。如果函数在区间(a,b)内随着 x 增大而减小,即:对于(a,b)内任意两点 x1及 x2,当 x1x2时,有,则称函数在区间(a,b)内是单调减小 的。例题:函数=x2在区间(-,0)上是单调减小的,在区间(0,+)上是单调增加的。、函数的奇偶性如果函数对于定义域内的任意x 都满足=,则叫做偶函数;如果函数对于定义域内的任意x 都满足=-,则叫做奇函数。注:偶函数的图形关于y 轴对称,奇函数的图形关于原点对称。、函数的周期

12、性对于函数,若存在一个不为零的数l,使得关系式对于定义域内任何x 值都成立,则叫做周期函数,l是的周期。注:我们说的周期函数的周期是指最小正周期。例题:函数是以 2 为周期的周期函数;函数tgx 是以 为周期的周期函数。4、反函数、反函数的定义:设有函数,若变量y 在函数的值域内任取一值y0时,变量 x 在函数的定义域内必有一值x0与之对应,即,那末变量 x 是变量 y 的函数.这个函数用来表示,称为函数的反函数.注:由此定义可知,函数也是函数的反函数。、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R上确定,且严格增(减).注:严格增(减)即是单调增(减)例题

13、:y=x2,其定义域为(-,+),值域为0,+).对于y 取定的非负值,可求得 x=.若我们不加条件,由y 的值就不能唯一确定x 的值,也就是在区间(-,+)上,函数不是严格增(减),故其 没有反函数。如果我们加上条件,要求x0,则对y0、x=就是 y=x2在要求 x0 时的反函数。即是:函数在此要求下严格增(减).、反函数的性质:在同一坐标平面内,与的图形是关于直线y=x 对称的。例题:函数与函数互为反函数,则它们的图形在同一直角坐标系中是关于直线y=x 对称的。如右图所示:5、复合函数复合函数的定义:若 y 是 u 的函数:,而 u 又是 x 的函数:,且的函数值的全部或部分在的定义域内,

14、那末,y 通过 u 的联系也是x 的函数,我们称后一个函数是由函数及复合而成的函数,简称复合函数,记作,其中 u 叫做中间变量。注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。例题:函数与函数是不能复合成一个函数的。因为对于的定义域(-,+)中的任何x 值所对应的u 值(都大于或等于2),使都没有定义。6、初等函数、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:函数名称函数的记号函数的图形函数的性质指数函数a):不论 x 为何值,y 总为正数;b):当 x=0 时,y=1.对数函数a):其图

15、形总位于y 轴右侧,并过(1,0)点b):当 a1 时,在区间(0,1)的值为负;在区间(-,+)的值为正;在定义域内单调增.幂函数a 为任意实数这里只画出部分函数图形的一部分。令 a=m/n a):当 m为偶数 n 为奇数时,y 是偶函数;b):当 m,n 都是奇数时,y 是奇函数;c):当 m奇 n 偶时,y 在(-,0)无意义.三角函数(正弦函数)这里只写出了正弦函数a):正弦函数是以2 为周期的周期函数b):正弦函数是奇函数且反三角函数(反正弦函数)这里只写出了反正弦函数a):由于此函数为多值函数,因此我们此函数值限制在-/2,/2 上,并称其为反正弦函数的主值.、初等函数:由基本初等

16、函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一个解析式表出的函数称为初等函数.例题:是初等函数。7、双曲函数及反双曲函数、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)函数的名称函数的表达式函数的图形函数的性质双曲正弦a):其定义域为:(-,+);b):是奇函数;c):在定义域内是单调增双曲余弦a):其定义域为:(-,+);b):是偶函数;c):其图像过点(0,1);双曲正切a):其定义域为:(-,+);b):是奇函数;c):其图形夹在水平直线y=1 及y=-1 之间;在定域内单调增;我们再来看一下双曲函数与三角函数的区别:双曲函数的性质三角函数的性质shx 与

17、 thx 是奇函数,chx 是偶函数sinx 与 tanx 是奇函数,cosx 是偶函数它们都不是周期函数都是周期函数双曲函数也有和差公式:、反双曲函数:双曲函数的反函数称为反双曲函数.a):反双曲正弦函数其定义域为:(-,+);b):反双曲余弦函数其定义域为:1,+);c):反双曲正切函数其定义域为:(-1,+1);8、数列的极限我们先来回忆一下初等数学中学习的数列的概念。、数列:若按照一定的法则,有第一个数a1,第二个数a2,依次排列下去,使得任何一个正整数 n 对应着一个确定的数an,那末,我们称这列有次序的数a1,a2,an,为 数列.数列中的每一个数叫做 数列的项。第 n 项 an叫

18、做数列的 一般项或通项.注:我们也可以把数列an看作 自变量为正整数n 的函数,即:an=,它的定义域是全体正整数、极限:极限的概念是求实际问题的精确解答而产生的。例:我们可通过作圆的内接正多边形,近似求出圆的面积。设有一圆,首先作圆内接正六边形,把它的面积记为A1;再作圆的内接正十二边形,其面积记为A2;再作圆的内接正二十四边形,其面积记为A3;依次循下去(一般把内接正62n-1边形的面积记为An)可得一系列内接正多边形的面积:A1,A2,A3,An,它们就构成一列有序数列。我们可以发现,当内接正多边形的边数无限增加时,An也无限接近某一确定的数值(圆的面积),这个确定的数值在数学上被称为数

19、列 A1,A2,A3,An,当 n(读作 n 趋近于无穷大)的极限。注:上面这个例子就是我国古代数学家刘徽(公元三世纪)的割圆术。、数列的极限:一般地,对于数列来说,若存在任意给定的正数(不论其多么小),总存在正整数N,使得对于 nN时的一切不等式都成立,那末就称常数a 是数列的极限,或者称数列收敛 于 a.记作:或注:此定义中的正数 只有任意给定,不等式才能表达出与 a 无限接近的意思。且定义中的正整数N 与任意给定的正数 是有关的,它是随着 的给定而选定的。、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列极限为 a 的一个 几何解

20、释:将常数 a 及数列在数轴上用它们的对应点表示出来,再在数轴上作点a 的 邻域即开区间(a-,a+),如下图所示:因不等式与不等式等价,故当nN时,所有的点都落在开区间(a-,a+)内,而只有有限个(至多只有 N 个)在此区间以外。注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。、数列的有界性:对于数列,若存在着正数M,使得一切都满足不等式M,则称数列是有界的,若正数 M不存在,则可说数列是无界的。定理:若数列收敛,那末数列一定有界。注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,(-1)n+1,是有界的,但它是发散的

21、。9、函数的极限前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1内的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做 函数存在极值。我们已知道函数的极值的情况,那么 函数的极限如何呢?下面我们结合着数列的极限来学习一下函数极限的概念!、函数的极限(分两种情况)a):自变量趋向无穷大时函数的极限定义:设函数,若对于任意给定的正数(不论其多么小),总存在着正数X,使得对于适合不等式的一切 x,所对应的函数值都

22、满足不等式那末常数 A就叫做函数当 x时的极限,记作:下面我们用表格把函数的极限与数列的极限对比一下:数列的极限的定义函数的极限的定义存在数列与常数 A,任给一正数 0,总可找到一正整数N,对于 nN的所有都满足 则称数列,当 x时收敛于A记:。存在函数与常数 A,任给一正数0,总可找到一正数X,对于适合的一切 x,都满足,函数当 x时的极限为A,记:。从上表我们发现了什么?试思考之b):自变量趋向有限值时函数的极限。我们先来看一个例子.例:函数,当 x1 时函数值的变化趋势如何?函数在x=1 处无定义.我们知道对实数来讲,在数轴上任何一个有限的范围内,都有无穷多个点,为此我们把x1 时函数值

23、的变化趋势用表列出,如下图:从中我们可以看出x1 时,2.而且只要x 与 1 有多接近,就与 2 有多接近.或说:只要与 2 只差一个微量,就一定可以找到一个,当 时满足 定义:设函数在某点 x0的某个去心邻域内有定义,且存在数A,如果对任意给定的(不论其多么小),总存在正数,当 0 时,则称函数当 xx0时存在极限,且极限为A,记:。注:在定义中为什么是在去心邻域内呢?这是因为我们只讨论xx0的过程,与 x=x0出的情况无关。此定义的核心问题是:对给出的,是否存在正数,使其在去心邻域内的x 均满足不等式。有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?a):先任取

24、 0;b):写出不等式;c):解不等式能否得出去心邻域0,若能;d):则对于任给的0,总能找出,当0 时,成立,因此10、函数极限的运算规则前面已经学习了数列极限的运算规则,我们知道数列可作为一类特殊的函数,故函数极限的运算规则与数列极限的运算规则相似。、函数极限的运算规则若已知 xx0(或 x)时,.则:推论:在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。例题:求解答:例题:求此题如果像上题那样求解,则会发现此函数的极限不存在.我们通过观察可以发现此分式的分子和分母都没有极限,像这种情况怎么办呢?下面我们把它解出来。解答:注:通过此例题我们可以发现:当分式的

25、分子和分母都没有极限时就不能运用商的极限的运算规则了,应先把分式的分子分母转化为存在极限的情形,然后运用规则求之。函数极限的存在准则学习函数极限的存在准则之前,我们先来学习一下左、右的概念。我们先来看一个例子:例:符号函数为对于这个分段函数,x 从左趋于 0 和从右趋于0 时函数极限是不相同的.为此我们定义了左、右极限的概念。定义:如果 x 仅从左侧(x x0)趋近 x0时,函数与常量 A无限接近,则称 A为函数当时的 左极限.记:如果 x 仅从右侧(x x0)趋近 x0时,函数与常量 A无限接近,则称 A为函数当时的右极限.记:注:只有当 xx0时,函数的左、右极限存在且相等,方称在 xx0

26、时有极限函数极限的存在准则准则一:对于点x0的某一邻域内的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有,且,那末存在,且等于A 注:此准则也就是夹逼准则.准则二:单调有界的函数必有极限.注:有极限的函数不一定单调有界两个重要的极限一:注:其中 e 为无理数,它的值为:e=2.718281828459045.二:注:在此我们对这两个重要极限不加以证明.注:我们要牢记这两个重要极限,在今后的解题中会经常用到它们.例题:求解答:令,则 x=-2t,因为 x,故t,则注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x时,若用t 代换 1/x,则 t0.无穷大量和无穷小量无穷大量

27、我们先来看一个 例子:已知函数,当 x0 时,可知,我们把这种情况称为趋向无穷大。为此我们可定义如下:设有函数y=,在 x=x0的去心邻域内有定义,对于任意给定的正数N(一个任意大的数),总可找到正数,当时,成立,则称函数当时为 无穷大量。记为:(表示为无穷大量,实际它是没有极限的)同样我们可以给出当x时,无限趋大的定义:设有函数y=,当 x 充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函数当 x时是 无穷大量,记为:无穷小量以零为极限的变量称为无穷小量。定义:设有函数,对于任意给定的正数(不论它多么小),总存在正数(或正数M),使得对于适合不等式

28、(或)的一切x,所对应的函数值满足不等式,则称函数当(或 x)时为无穷小量.记作:(或)注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0 可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.关于无穷小量的两个定理定理一:如果函数在(或 x)时有极限A,则差是当(或x)时的无穷小量,反之亦成立。定理二:无穷小量的有利运算定理a):有限个无穷小量的代数和仍是无穷小量;b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.无穷小量的比较通过前面的学习我们已经知道,两个无穷小量的和、差

29、及乘积仍旧是无穷小.那么 两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。定义:设,都是时的无穷小量,且 在 x0的去心领域内不为零,a):如果,则称 是 的高阶无穷小 或 是 的低阶无穷小;b):如果,则称 和 是同阶无穷小;c):如果,则称 和 是等价无穷小,记作:(与 等价)例:因为,所以当x0 时,x 与 3x 是同阶无穷小;因为,所以当x0 时,x2是 3x 的高阶无穷小;因为,所以当 x0 时,sinx 与 x 是等价无穷小。等价无穷小的性质设,且存在,则.注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替

30、,因此我们可以利用这个性质来简化求极限问题。例题:1.求解答:当 x0 时,sinaxax,tanbxbx,故:例题:2.求解答:注:注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。函数的一重要性质连续性在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性在定义函数的连续性之前我们先来学习一个概念增量设变量 x 从它的一个初值x1变到终值 x2,终值与初值的差x2-x1就叫做 变量 x 的增量,记为:x 即:x=x2-x1增量x 可正可负.我们再来看一个例子:函数在点 x0的邻域内有定义,当自变量

31、x 在领域内从x0变到 x0+x时,函数 y 相应地从变到,其对应的增量为:这个关系式的几何解释如下图:现在我们可对连续性的概念这样描述:如果当x 趋向于零时,函数 y 对应的增量y 也趋向于零,即:,那末就称函数在点 x0处连续。函数连续性的定义:设函数在点 x0的某个邻域内有定义,如果有称函数在点x0处 连续,且称 x0为函数的的连续点.下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续 的概念:设函数在区间(a,b内有定义,如果左极限存在且等于,即:=,那末我们就称函数在点b 左连续.设函数在区间 a,b)内有定义,如果右极限存在且等于,即:=,那末我们就称函数在点 a 右连续

32、.一个函数在开区间(a,b)内每点连续,则为在(a,b)连续,若又在a 点右连续,b 点左连续,则在闭区间a,b 连续,如果在整个定义域内连续,则称为连续函数。注:一个函数若在定义域内某一点左、右都连续,则称函数在此点连续,否则在此点不连续.注:连续函数图形是一条连续而不间断的曲线。通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点函数的间断点定义:我们把不满足函数连续性的点称之为间断点.它包括三种情形:a):在 x0无定义;b):在 xx0时无极限;c):在 xx0时有极限但不等于;下面我们通过例题来学习

33、一下间断点的类型:例 1:正切函数在处没有定义,所以点是函数的间断点,因,我们就称为函数的无穷间断点;例 2:函数在点 x=0 处没有定义;故当x0 时,函数值在-1 与+1 之间变动无限多次,我们就称点 x=0 叫做函数的振荡间断点;例 3:函数当 x0 时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0 是不存在极限。我们还可以发现在点 x=0 时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:间断点的分类我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为函数的第

34、一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.可去间断点若 x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函数不连续原因是:不存在或者是存在但。我们令,则可使函数在点 x0处连续,故这种间断点x0称为可去间断点。连续函数的性质及初等函数的连续性连续函数的性质函数的和、积、商的连续性我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:a):有限个在某点连续的函数的和是一个在该点连续的函数;b):有限个在某点连续的函数的乘积是一个在该点连续的函数;c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);反函数的连续性若函数在某区间上

35、单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续例:函数在闭区间上单调增且连续,故它的反函数在闭区间-1,1上也是单调增且连续的。复合函数的连续性设函数当 xx0时的极限存在且等于a,即:.而函数在点 u=a连续,那末复合函数当 x x0时的 极限也存在 且等于.即:例题:求解答:注:函数可看作与复合而成,且函数在点 u=e连续,因此可得出上述结论。设函数在点 x=x0连续,且,而函数在点 u=u0连续,那末复合函数在点 x=x0也是连续 的初等函数的连续性通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域内都是连续的;一切初等函数在其定

36、义域内也都是连续的.闭区间上连续函数的性质闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明)例:函数 y=sinx 在闭区间 0,2上连续,则在点 x=/2 处,它的函数值为1,且大于闭区间 0,2上其它各点出的函数值;则在点x=3/2处,它的函数值为-1,且小于闭区间0,2上其它各点出的函数值。介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,在、之间,则在 a,b 间一定有一个,使推论:在闭区间连续的函数必取得介于最

37、大值最小值之间的任何值。二、导数与微分导数的概念在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。例:设一质点沿 x 轴运动时,其位置x 是时间 t 的函数,求质点在t0的瞬时速度?我们知道时间从t0有增量t时,质点的位置有增量,这就是质点在时间段t的位移。因此,在此段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t0时的瞬时速度。我们认为当时间段t无限地接近于0 时,此平 均 速 度 会 无 限 地 接 近 于 质 点t0时 的 瞬 时 速 度,即:质 点 在t0时 的 瞬 时 速 度=为此就产生了导数

38、的定义,如下:导数的定义:设函数在点 x0的某一邻域内有定义,当自变量x 在 x0处有增量 x(x+x 也在该邻域内)时,相应地函数有增量,若y 与x 之比当 x0 时极限存在,则称这个极限值为在 x0处的 导数。记为:还可记为:,函数在点 x0处存在导数简称函数在点 x0处可导,否则不可导。若函数在区间(a,b)内每一点都可导,就称函数在区间(a,b)内可导。这时函数对于区间(a,b)内的每一个确定的 x 值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。注:导数也就是差商的极限左、右导数前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、

39、右导数的概念。若极限存在,我们就称它为函数在 x=x0处的 左导数。若极限存在,我们就称它为函数在 x=x0处的 右导数。注:函数在 x0处的左右导数存在且相等是函数在 x0处的可导的充分必要条件函数的和、差求导法则函数的和差求导法则法 则:两 个 可 导 函 数 的 和(差)的 导 数 等 于 这 两 个 函 数 的 导 数 的 和(差).用 公 式 可 写 为:。其中 u、v 为可导函数。例题:已知,求解答:例题:已知,求解答:函数的积商求导法则常数与函数的积的求导法则法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成:例题:已知,求解答:函数的积

40、的求导法则法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成:例题:已知,求解答:注:若是三个函数相乘,则先把其中的两个看成一项。函数的商的求导法则法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成:例题:已知,求解答:复合函数的求导法则在学习此法则之前我们先来看一个例子!例题:求=?解答:由于,故这个解答 正确吗?这个解答是错误的,正确的解答 应该如下:我们发生错误的原因是是对自变量x 求导,而不是对2x 求导。下面我们给出复合函数的求导法则复合函数的求导规则规则:

41、两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数。用公式表示为:,其中 u 为中间变量例题:已知,求解答:设,则可分解为,因此注:在以后解题中,我们可以中间步骤省去。例题:已知,求解答:反函数求导法则根据反函数的定义,函数为单调连续函数,则它的反函数,它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):定理:若是单调连续的,且,则它的反函数在点x 可导,且有:注:通过此定理我们可以发现:反函数的导数等于原函数导数 的倒数。注:这里的反函数是以 y 为自变量的,我们没有对它作记号变换。即:是对 y 求导,是对 x 求导例题:求的导

42、数.解答:此函数的反函数为,故则:例题:求的导数.解答:此函数的反函数为,故则:高阶导数我们知道,在物理学上变速直线运动的速度v(t)是位置函数s(t)对时间 t 的导数,即:,而加速度 a 又是速度 v 对时间 t 的变化率,即速度 v 对时间 t 的导数:,或。这种导数的导数叫做 s 对 t 的二阶导数。下面我们给出它的数学定义:定义:函数的导数仍然是x 的函数.我们把的导数叫做函数的二阶导数,记作或,即:或.相应地,把的导数叫做函数的一阶导数.类似地,二阶导数的导数,叫做三阶导数,三阶导数的导数,叫做 四阶导数,一般地(n-1)阶导数的导数叫做n 阶导数.分别记作:,或,二阶及二阶以上的

43、导数统称高阶导数。由此可见,求高阶导数就是多次接连地求导,所以,在求高阶导数时可运用前面所学的求导方法。例题:已知,求解答:因为=a,故=0例题:求对数函数的 n 阶导数。解答:,一般地,可得隐函数及其求导法则我们知道用解析法表示函数,可以有不同的形式.若函数 y 可以用含自变量x 的算式表示,像y=sinx,y=1+3x 等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.一般地,如果方程F(x,y)=0中,令 x 在某一区间内任取一值时,相应地总有满足此方程的y 值存在,则我们就说方程F(x,y)=0在该区间上确定了x 的隐函数 y.把一个隐函数化成显函数的形式,叫做 隐函数的显化

44、。注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?下面让我们来解决这个问题!隐函数的求导若已知 F(x,y)=0,求时,一般按下列步骤进行求解:a):若方程 F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导;b):若方程 F(x,y)=0,不能化为的形式,则是方程两边对x 进行求导,并把y 看成 x 的函数,用复合函数求导法则进行。例题:已知,求解 答:此 方 程 不 易 显 化,故 运 用 隐 函 数 求 导 法.两 边 对x进 行 求 导,故=注:我们对隐函数两边对x 进行求导时,一定要把变量y 看成 x 的函数,然后对其 利用复合函数求导法则 进行求导。例

45、题:求隐函数,在 x=0 处的导数解答:两边对x 求导,故,当x=0 时,y=0.故。有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢?下面我们再来学习一种求导的方法:对数求导法对数求导法对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。注:此方法特别适用于幂函数的求导问题。例题:已知x0,求此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行求导,就比较简便些。如下解答:先两边取对数:,把其看成隐函数,再两边求导因为,所以例题:已知,求此题可用复合函数求导法则进行求导,但是比较麻烦

46、,下面我们利用对数求导法进行求导解 答:先 两 边 取 对 数再 两 边 求 导因为,所以函数的微分学习函数的微分之前,我们先来分析一个具体问题:一块正方形金属薄片受温度变化的影响时,其边长由 x0变到了 x0+x,则此薄片的面积改变了多少?解答:设此薄片的边长为x,面积为 A,则 A 是 x 的函数:薄片受温度变化的影响面积的改变 量,可 以 看 成 是 当 自 变 量x从x0取 的 增 量 x 时,函 数A相 应 的 增 量 A,即:。从上式我们可以看出,A 分成两部分,第一部分是x的线性函数,即下图中红色部分;第二部分即图中的黑色部分,当x0 时,它是x 的高阶无穷小,表示为:由此我们可

47、以发现,如果边长变化的很小时,面积的改变量可以近似的用地一部分来代替。下面我们给出微分的数学定义:函数微分的定义:设函数在某区间内有定义,x0及 x0+x 在这区间内,若函数的增量可表示为,其中 A是不依赖于x 的常数,是x的高阶无穷小,则称函数在点 x0可微的。叫做函数在点 x0相应于自变量增量x的微分,记作 dy,即:=。通过上面的学习我们知道:微分是自变量改变量x的线性函数,dy 与y的差是关于x的高阶无穷小量,我们把 dy 称作y的线性主部。于是我们又得出:当x0 时,ydy.导数的记号为:,现在我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把x看成dx,即:定义自

48、变量的增量等于自变量的微分),还可表示为:由此我们得出:若函数在某区间上可导,则它在此区间上一定可微,反之亦成立。微分形式不变性什么是微分形式不边形呢?设,则复合函数的微分为:,由于,故我们可以把复合函数的微分写成由此可见,不论u 是自变量还是中间变量,的微分 dy 总可以用与 du 的乘积来表示,我们把这一性质称为微分形式不变性。例题:已知,求 dy 解答:把 2x+1 看成中间变量u,根据微分形式不变性,则通过上面的学习,我们知道微分与导数有着不可分割的联系,前面我们知道基本初等函数的导数公式和导数的运算法则,那么基本初等函数的微分公式和微分运算法则是怎样的呢?下面我们来学习基本初等函数的

49、微分公式与微分的运算法则基本初等函数的微分公式与微分的运算法则基本初等函数的微分公式由于函数微分的表达式为:,于是我们通过基本初等函数导数的公式可得出基本初等函数微分的公式,下面我们用表格来把基本初等函数的导数公式与微分公式对比一下:(部分公式)导数公式微分公式微分运算法则由函数和、差、积、商的求导法则,可推出相应的微分法则.为了便于理解,下面我们用表格来把微分的运算法则与导数的运算法则对照一下:函数和、差、积、商的求导法则函数和、差、积、商的微分法则复合函数的微分法则就是前面我们学到的微分形式不变性,在此不再详述。例题:设,求对 x3的导数解答:根据微分形式的不变性微分的应用微分是表示函数增

50、量的线性主部.计算函数的增量,有时比较困难,但计算微分则比较简单,为此我们用函数的微分来近似的代替函数的增量,这就是微分在近似计算中的应用.例题:求的近似值。解答:我们发现用计算的方法特别麻烦,为此把转化为求微分的问题故其近似值为1.025(精确值为 1.024695)三、导数的应用微分学中值定理在给出微分学中值定理的数学定义之前,我们先从几何的角度看一个问题,如下:设有连续函数,a 与 b 是它定义区间内的两点(ab),假定此函数在(a,b)处处可导,也就是在(a,b)内的函数图形上处处都由切线,那末我们从图形上容易直到,差商就是割线AB的斜率,若我们把割线AB作平行于自身的移动,那么至少有

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 其他报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com