初中数学几何知识点大全(汇总7篇).docx

上传人:1513****116 文档编号:96010744 上传时间:2023-09-06 格式:DOCX 页数:18 大小:20.24KB
返回 下载 相关 举报
初中数学几何知识点大全(汇总7篇).docx_第1页
第1页 / 共18页
初中数学几何知识点大全(汇总7篇).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《初中数学几何知识点大全(汇总7篇).docx》由会员分享,可在线阅读,更多相关《初中数学几何知识点大全(汇总7篇).docx(18页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、 初中数学几何知识点大全(汇总7篇) 三角形的学问点 1、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三角形的分类 3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 7、高线、中线、角平分线的意义和做法 8、三角形的稳定性:三角形的外形是固定的,三角形的这共性质叫三角

2、形的稳定性。 9、三角形内角和定理:三角形三个内角的和等于180 推论1直角三角形的两个锐角互余 推论2三角形的一个外角等于和它不相邻的两个内角和 推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半 10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。 11、三角形外角的性质 (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线; (2)三角形的一个外角等于与它不相邻的两个内角和; (3)三角形的一个外角大于与它不相邻的任一内角; (4)三角形的外角和是360。 四边形(含多边形)学问点、概念总结 一、平行四边形的

3、定义、性质及判定 1、两组对边平行的四边形是平行四边形。 2、性质: (1)平行四边形的对边相等且平行 (2)平行四边形的对角相等,邻角互补 (3)平行四边形的对角线相互平分 3、判定: (1)两组对边分别平行的四边形是平行四边形 (2)两组对边分别相等的四边形是平行四边形 (3)一组对边平行且相等的四边形是平行四边形 (4)两组对角分别相等的四边形是平行四边形 (5)对角线相互平分的四边形是平行四边形 4、对称性:平行四边形是中心对称图形 二、矩形的定义、性质及判定 1、定义:有一个角是直角的平行四边形叫做矩形 2、性质:矩形的四个角都是直角,矩形的对角线相等 3、判定: (1)有一个角是直

4、角的平行四边形叫做矩形 (2)有三个角是直角的四边形是矩形 (3)两条对角线相等的平行四边形是矩形 4、对称性:矩形是轴对称图形也是中心对称图形。 三、菱形的定义、性质及判定 1、定义:有一组邻边相等的平行四边形叫做菱形 (1)菱形的四条边都相等 (2)菱形的对角线相互垂直,并且每一条对角线平分一组对角 (3)菱形被两条对角线分成四个全等的直角三角形 (4)菱形的面积等于两条对角线长的积的一半 2、s菱=争6(n、6分别为对角线长) 3、判定: (1)有一组邻边相等的平行四边形叫做菱形 (2)四条边都相等的四边形是菱形 (3)对角线相互垂直的平行四边形是菱形 4、对称性:菱形是轴对称图形也是中

5、心对称图形 四、正方形定义、性质及判定 1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形 2、性质: (1)正方形四个角都是直角,四条边都相等 (2)正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角 (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形 (4)正方形的对角线与边的夹角是45 (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形 3、判定: (1)先判定一个四边形是矩形,再判定出有一组邻边相等 (2)先判定一个四边形是菱形,再判定出有一个角是直角 4、对称性:正方形是轴对称图形也是中心对称图形 五、梯形的定义、等腰梯形的性质及判

6、定 1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形 2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等 3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形 4、对称性:等腰梯形是轴对称图形 六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。 七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。 八、依次连接任意一个四边形各边中点所得的四边形叫中点四

7、边形。 九、多边形 1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 2、多边形的内角:多边形相邻两边组成的角叫做它的内角。 3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。 6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 7、平面镶嵌:用一些不重叠摆放的多边形把平面的一局部完全掩盖,叫做

8、用多边形掩盖平面。 8、公式与性质 多边形内角和公式:n边形的内角和等于(n-2)180 9、多边形外角和定理: (1)n边形外角和等于n180-(n-2)180=360 (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n180 10、多边形对角线的条数: (1)从n边形的一个顶点动身可以引(n-3)条对角线,把多边形分词(n-2)个三角形 (2)n边形共有n(n-3)/2条对角线 圆学问点、概念总结 1、不在同始终线上的三点确定一个圆。 2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧 推论1(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分

9、线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 推论2圆的两条平行弦所夹的弧相等 3、圆是以圆心为对称中心的中心对称图形 4、圆是定点的距离等于定长的点的集合 5、圆的内部可以看作是圆心的距离小于半径的点的集合 6、圆的外部可以看作是圆心的距离大于半径的点的集合 7、同圆或等圆的半径相等 8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 10、推论在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余

10、各组量都相等。 11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 12、直线L和O相交d 直线L和O相切d=r 直线L和O相离dr 13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 14、切线的性质定理:圆的切线垂直于经过切点的半径 15、推论1经过圆心且垂直于切线的直线必经过切点 16、推论2经过切点且垂直于切线的直线必经过圆心 17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 18、圆的外切四边形的两组对边的和相等,外角等于内对角 19、假如两个圆相切,那么切点肯定在连心线上 20、两圆外离dR+

11、r 两圆外切d=R+r 两圆相交R-rr) 两圆内切d=R-r(Rr)两圆内含dr) 21、定理:相交两圆的连心线垂直平分两圆的公共弦 22、定理:把圆分成n(n3): (1)依次连结各分点所得的多边形是这个圆的内接正n边形 (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 24、正n边形的每个内角都等于(n-2)180/n 25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 26、正n边形的面积Sn=pnrn/2p表示正n边形的周长 27、正三角形面积3a/4a表示边长

12、28、假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4 29、弧长计算公式:L=n兀R/180 30、扇形面积公式:S扇形=n兀R2/360=LR/2 31、内公切线长=d-(R-r)外公切线长=d-(R+r) 32、定理:一条弧所对的圆周角等于它所对的圆心角的一半 33、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 34、推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 35、弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r 初中数学几何学问点大

13、全2 几何的初步学问 线和角 (1)线 *直线 直线没有端点;长度无限;过一点可以画很多条,过两点只能画一条直线。 *射线 射线只有一个端点;长度无限。 *线段 线段有两个端点,它是直线的一局部;长度有限;两点的连线中,线段为最短。 *平行线 在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。 *垂线 两条直线相交成直角时,这两条直线叫做相互垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。 从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。 (2)角 (1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。 (2)角的

14、分类 锐角:小于90的角叫做锐角。 直角:等于90的角叫做直角。 钝角:大于90而小于180的角叫做钝角。 平角:角的两边成一条直线,这时所组成的角叫做平角。平角180。 周角:角的一边旋转一周,与另一边重合。周角是360。 初中数学几何学问点大全3 直角三角形的性质: 直角三角形的两个锐角互为余角; 直角三角形斜边上的中线等于斜边的一半; 直角三角形的两直角边的平方和等于斜边的平方(勾股定理); 直角三角形中30度 角所对的直角边等于斜边的一半; 直角三角形的判定: 有两个角互余的三角形是直角三角形; 假如三角形的三边长a、b 、c有下面关系a2+b2=c2,那么这个三角形是直角三角形(勾股

15、定理的逆定理)。 初中数学几何学问点大全4 立体几何初步 (1)棱柱: 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等

16、表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的局部 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边

17、为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的局部 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。 (7)球体: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。 数学起源 数学,古希腊学者视其为哲学之起点,“学问的根底”。另外,还有个较狭隘且技术性的意义“数学讨论”。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。 在中国古代,数学叫作算术

18、,又称算学,最终才改为数学。中国古代的算术是六艺之一(六艺中称为“数”)。 数学起源于人类早期的生产活动,古巴比伦人从远古时代开头已经积存了肯定的数学学问,并能应用实际问题.从数学本身看,他们的数学学问也只是观看和阅历所得,没有综合结论和证明,但也要充分确定他们对数学所做出的奉献。 数学判定与性质区分 性质是从客观角度认知事物的形式,事物本身所具有的与其他事物不同的根本属性。性质是指从数学概念直接推导得出的运算法则或者运算公式等延长的学问。判定多用于数学的证明概念,通过事物的本质属性反映出的本质性质,以此作为依据推知下一步结论。 初中数学几何学问点大全5 一、线、角 1.直线没有端点,没有长度

19、,可以无限延长。 2.射线只有一个端点,没有长度,射线可以无限延长,并且射线有方向。 3.在一条直线上的一个点可以引出两条射线。 4.线段有两个端点,可以测量长度。圆的半径、直径都是线段。 5.角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。 6.几个易错的角边关系: (1)平角的两边是射线,平角不是直线。 (2)三角形、四边形中的角的两边是线段。 (3)圆心角的两边是线段。 7.两条直线相交成直角时,这两条直线叫做相互垂直。其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 8.从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距

20、离。 9.在同一个平面上不相交的两条直线叫做平行线。 二、三角形 1.任何三角形内角和都是180度。 2.三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。 3.任何三角形都有三条高。 4.直角三角形两个锐角的和是90度。 5.两个三角形等底等高,则它们面积相等。 6.面积相等的两个三角形,外形不肯定一样。 三、正方形面积 1.正方形面积:边长边长 2.正方形面积:两条对角线长度的积2 四、三角形、四边形的关系 1.两个完全一样的三角形能组成一个平行四边形。 2.两个完全一样的直角三角形能组成一个长方形。 3.两个完全一样的等腰直角三角形能组成一个正方形。 4.两个完全

21、一样的梯形能组成一个平行四边形。 五、圆 1.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r2。 2.一个环形,外圆的半径是R,内圆的半径是r,它的面积是 3.半圆的周长等于圆的周长的一半加直径。 六、半圆的周长公式:C=d?2+d或C=pr+2r 4.半圆面积=圆的面积/2 5.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小一样的倍数。而面积扩大或缩小以上倍数的平方倍。 七、圆柱、圆锥 1.把圆柱的侧面绽开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。 2.假如

22、把圆柱的侧面绽开,得到一个正方形,那么圆柱的底面周长和高相等。 3.把一个圆柱沿着半径切开,拼成一个近似的长方体,体积不变,外表积增加了两个面,增加的面积是rh2。 4.把一个圆柱沿着底面直径劈开,得到两个半圆柱体,外表积和比原来增加了两个长方形的面,增加的面积和是dh2。 5.把一个圆柱加工成一个最大的圆锥,那么圆柱与圆锥等底等高,削去的圆柱的体积占圆柱体积的,削去的圆柱的体积占圆锥体积的2倍。 6.把一个圆柱截成几段,增加的外表积是底面圆,增加的面的个数是:截的次数2。 初中数学几何学问点大全6 等腰三角形的性质: 等腰三角形的两个底角相等; 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(三线合一) 初中数学几何学问点大全7 三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边; 三角形的内角和定理:三角形的三个内角的和等于180度; 三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和; 三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角; 三角形的三条角平分线交于一点(内心); 三角形的三边的垂直平分线交于一点(外心); 三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com