[精选]金属连接及切割工艺课件16799.pptx

上传人:muj****520 文档编号:87163013 上传时间:2023-04-16 格式:PPTX 页数:73 大小:2.58MB
返回 下载 相关 举报
[精选]金属连接及切割工艺课件16799.pptx_第1页
第1页 / 共73页
[精选]金属连接及切割工艺课件16799.pptx_第2页
第2页 / 共73页
点击查看更多>>
资源描述

《[精选]金属连接及切割工艺课件16799.pptx》由会员分享,可在线阅读,更多相关《[精选]金属连接及切割工艺课件16799.pptx(73页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、American Welding SocietyAWS第三章第三章 金属金属连连接及切割工接及切割工艺艺 介介绍绍 焊焊接工接工艺艺 钎焊钎焊工工艺艺 切割工切割工艺艺 术语术语和定和定义义 第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12介介绍作为焊接检验师,首先关心的是焊接,但掌握各种连接及切割工艺也是非常有帮助的。虽然焊接检验师不必是有资格的焊工,但以往的焊接经验是很有用的。事实上,很多焊接检验师是从焊工中选取的,而且他们往往能成为最好的检验师。一个好的焊接检验师,必须掌握各种连接及切割工艺方面的知识,以便有效的进行工作。首先,检验师必须认识到每种工艺的长处或短处,也应

2、该知道特定的工艺可能会产生哪些不连续。虽然许多缺陷的产生是与实施的工艺无关的,但有些缺陷的产生是与特定的工艺有关,这里将对每种工艺可能产生的缺陷进行探讨并将其定为“可能出现的问题”。焊接检验师也必须具备与各种工艺相关的焊接设备方面的知识,因为缺陷的产生经常是由设备原因引起的。检验师必须在一定程度上掌握各种设备的控制方法以及设备调整与焊接质量之间的关系。当焊接检验师具备某些工艺方面的基础知识后,他或她便可以准备进行目视焊接检验,这将有助于及时发现问题而不是事后采取花费很大的纠正措施。检验师具备在过程中发现问题的能力无论对生产还是产品质量的控制都是有益的。本章所讨论的内容分为三个部分:焊接、钎焊和

3、切割。焊接和钎焊用于金属间的连接,而切割则是为了将材料去除或将其分离。对每一种连接和切割方法,这里将描述其主要特性,包括:每种工艺的长处、短处、设备要求、焊条/填充金属、技术、应用范围以及可能出现的问题。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12因此,本因此,本课程程仅选取与美国取与美国焊接学会接学会认可可焊接接检验师考考试相关的工相关的工艺进行行讨论,详列列如下:如下:第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.焊焊接工接工艺艺根据美国焊接学会的定义,焊焊接接是“通过将材料加热到焊接温度、加压或不加压,或仅通过加压,使用或不使用填充材料而将金

4、属或非金属在局部接合的过程”,接合即“连接在一起”,因此焊接是指实现连接的操作活动。本节将对加热但不加压的常用焊接工艺的基本特性作一介绍。1.1 手工手工电电弧弧焊焊(SMAW)这里首先要讨论的是手工电弧焊,也就是我们通常所说的“手把焊”,它是通过带药皮的焊条和被焊金属间的电弧将被焊金属加热,从而达到焊接的目的。图3.2给出了手工电弧焊的各种影响因素及成型的情况。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12手工电弧焊中最主要的要素是焊条本身,它是由金属芯外覆一层粒状焊剂和某种粘接剂制作而成的。所有的碳钢和低合金钢焊条基本上都用低碳钢丝做芯,而合金元素则来自于药皮,这也是较

5、为经济的一种合金化方法。焊条药皮的不同导致了不同焊条种类,焊条药皮有以下五种作用:保护药皮分解后产生的气体为熔融金属提供保护。脱氧药皮为焊剂去除氧气和其他气体。合金化药皮为焊缝提供合金化元素。电离药皮改善电特性以增强电弧稳定性。保温凝固的焊渣在焊缝金属上的覆盖降低了焊缝金属的冷却速度(次要影响)。由于焊条在手工电弧焊中的影响很大,就有必要了解其分类和品种。美国焊接学会给出了手工电弧焊焊条的标识方法,见图3.3。例如:例如:E7018第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12焊条标识中用字母E和另外四到五个数字组成,字母E代表代表焊条条。前二个数字代表熔敷金属的最小抗拉最

6、小抗拉强度度,单位为千磅每平方英寸,“70”就表示熔覆金属的最小抗拉强度为70,000磅每平方英寸(PSI)。接下来的数字代表焊条的可可焊位置位置。数字“1”表示焊条可用于任何焊接位置,数字“2”表示熔融金属流动性非常好,只能用于平焊或角焊缝的横焊,数字“4”表示焊条可用于立向下焊,数字“3”不再使用。最后一个数字表示焊条药皮的组成和性能,药皮决定了可焊性和推荐的电流类别,AC(交流),DCEP(直流反接)或DCEN(直流正接)。图3.4列出了手工电弧焊的焊条标识方法。必须强调的是,焊条最后一个数字为“5”、“6”和和“8”的,表示其为“低低氢焊条条”。为了保持其低氢含量以免受潮,这些焊条必须

7、按原包装密封保存,或贮存在适宜的烘箱内,这些烘箱应采用电加热并将温度控制在150F至350F的范围内,烘箱必须保持低的潮湿度小于0.2%,因此需要有合适的通风能力。任何低氢焊条如果不用或刚拆封应立即放入烘箱,大多数规范均要求低氢焊条在拆封后放入温度不低于不低于250F(120C)的烘箱中。但是,这里也必须指明的是,除以上说明外,其它其它焊条条放入烘箱可能是有害的。有些焊条是要有一定的潮湿度的,如果潮湿度下降,焊条的可焊性将急剧下降。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12低合金钢焊接的焊条,是在标准的焊

8、条标识后,再加上用字母和数字组成的后缀,图3.5给出了一些重要的组合。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12手工电弧焊的设备相相对简单,一条导线连接待焊工件,另一条导线连接至焊工夹持焊条的焊把,焊条和母材通过焊条和工件靠近后产生的电弧加热后而熔化。手工电弧焊的电源就是通常所说的恒流电源,它具有“下降”的特性,这个术语可通过观察电源的电压电流曲线图来加以理解。当焊工增加弧长时,将会增加焊接回路的电阻,从而导致电流的轻微下降(10%),见图3.7(A),电流的下降促使电压急剧地上升(32%),电压的上升又反过来限制了电流的进一步下降。由于热量是电压、电流以及时间的函数,

9、可以看出长的电弧(32Vx135Ax60)/10IPM=25,920J/in.)将比短的电弧(22Vx150Ax60)/IPM=19,800J/in.)产生更多的热量。从工艺控制的角度看,这点很重要,因为焊工可通过改变电弧长度来增减焊缝熔池的流动性。但是,太大的电弧长度将使电弧的集中度降低,从而导致熔池热量的损失,使电弧稳定性降低,也会损失熔池的保护气体。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12除特殊合金材料外,手工电弧焊在大多数工业中大量使用。但它也是一种相对陈旧的焊接方法,有些新的焊接工艺在某些方面的应用上已经取代了它,即便这样,手工电弧焊仍然在焊接工业中广泛应用

10、。优缺点:缺点:有以下几个原因说明了它应用的广泛性。第一,设备简单而便宜,这就使得手工电弧焊很轻便。事实上,有很多种由汽油或柴油驱动的电焊机,用来完成在没有电的边远地区的焊接任务。还有,有些新的固态电源小而且轻巧,焊工很容易携带它们去工作。另外,由于各种各样的焊条易于获取,这种焊接工艺被认为是万能的。最后,随着设备和焊条的不断改进,这种焊接方法始终能保持很高的焊接质量。手工电弧焊的其中一个局限性是焊接速度,它受到焊工周期性停止焊接,来更换长度为9到18英寸焊条的限制。手工电弧焊在许多应用场合已被其它半自动、机械化和自动化的焊接工艺所取代,原因就是这些工艺与手工电弧焊相比,有着更高的生产效率。手

11、工电弧焊的另一个缺点也是影响生产率的,即焊后焊渣的清理。而且,当使用低氢焊条时,还需要有适当的贮存设施如烘箱以保持其较低的潮湿度。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12接下来讨论手工电弧焊可能产生的缺陷,这些缺陷不仅是我们可预料的,也可能来自于工艺使用不当。一种缺陷是焊缝中的气孔,是由于焊缝周围的潮湿和污染引起的,它可能来自于焊条药皮、材料表面或周围的大气,气孔也可能是由于焊工使用过长的电弧引起的,这点对低氢焊条尤其突出,因此,短弧将有助于减少气孔的出现。气孔也可能是由所说的“电弧偏吹”现象造成的,它存在于所有的电弧焊当中,这是一种常见问题且常常使手工焊焊工很苦恼。

12、(1)直流换成交流(和手上教材不同)(2)尽量使用短弧(3)减小焊接电流(4)向电弧偏吹的相反方向倾斜焊条(5)在接头两端用大的定位焊,在接头内用断续的定位焊(6)向着大的定位焊或完工焊缝的方向焊接(7)用分段退焊法(8)远离接地以减小电弧后吹,朝向接地以减小电弧前吹(9)将电缆连接至焊缝两端(10)将电缆缠绕在工件周围,其电流方向应能产生抵销电弧偏吹的磁场(11)在接头末端加熄弧板 除会产生气孔外,电弧偏吹还会导致飞溅、咬边、成型不好并降低焊接熔深。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.2 气体保气体保护电护电弧弧焊焊(GMAW)这里要讨论的工艺是气体保护电弧

13、焊,简写为GMAW。它是美国焊接学会所给出的一种工艺,也就是我们常说的熔化极惰性气体保护电弧焊MIG。通常它是用作一种半自半自动动工艺,但也可作为机械化和自机械化和自动动化化工艺来应用,因此它很适合于焊接机器人来操作。气体保护电弧焊是通过焊枪连续不断的送丝,由焊丝和工件之间产生的电弧的热量将母材和焊丝熔化,从而达到焊接的目的。图3.10描述了这一焊接工艺的基本过程。气体保护电弧焊很重要的一个特点是焊接过程的保护气体也是由焊枪输送的,这些气体有惰性的,也有非惰性的。惰性气体如氩、氦可用于某些焊接当中,它们可单独使用,也可混合使用,或与其它非惰性气体如氮气、氧气或二氧化碳混合使用。多数气体保护电弧

14、焊使用二氧化碳作为保护气体,因为与惰性气体相比,它价格较为便宜。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12气体保护电弧焊的电极是实芯焊丝,实芯焊丝缠绕成不同规格尺寸盘或卷,美国焊接学会给出了它们的标识方法,是以字母ER打头,后面有二到三个数字,然后是连字符S,最后是一个数字,见图3.11。字母ER代表焊丝既可用作电极,也可用作填充金属,或仅用作填充金属(对其它焊接工艺而言)。二到三个数字表示焊缝金属的最小抗拉强度,单位为千磅每平方英寸。因此,与手工电弧焊一样,“70”就表示填充金属的最小抗拉强度为70,000磅每平方英寸(PSI)。字母S表示表示为实芯芯焊丝,连字符后的

15、最后一个数字表示电极的化学成分,说明了其操作特性以及焊缝的性能。典型的气体保护电弧焊电极均增加脱氧剂如锰、硅和铝等,从而避免了气孔的发生。例如:例如:ER70S-6虽然焊丝没有药皮,但在不用时,也需妥善保管最重要的一点是要确保焊丝干净。如果把焊丝随便堆放,它将会受到灰尘、油、湿气、打磨飞灰以及其它存在于焊接车间介质的污染。因此,在不用时,焊丝必须贮存在原塑料包装或原运输包装内,如果一卷焊丝已经装在焊机上,当较长时间不用时,应加盖保护。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12气体保护电弧焊的电源与手工电弧焊的电源不同,它不是恒流电源,而是我们所说的恒压电源、或平特性电源

16、,也就是说,气体保护电弧焊的焊接是在设定的电压下,通过焊接过程中电流的变化来完成的。气体保护焊通常采用直流反接(DCEP),当用这种类型的电源和送丝机构配合时,就可以组成半自动、机械或全自动的焊接方法。正如所看见的那样,这种设备较手工电弧焊所使用的设备要复杂一些。一个完整的配置包括电源、送丝机构、保护气体以及通过柔性电缆连接在送丝机构上的焊枪,这根柔性电缆可以焊丝和保护气体。焊工可以通过在电源上调节电压,在送丝机构上调节送丝速度,以来设置焊接参数。当送丝速度增加,焊接电流也随之增加。焊丝的熔化率与焊接电流成适当的比例,这实际上是由送丝速度所控制的。值得一提的是这种电源是平特性电源。这种特性允许

17、实现半自动工艺功能,也就是说焊工不必象手工电弧焊焊工那样控制填充金属的送进。换句话说,这种系统被称为“自调节平特性”系统。这种特性是因为焊枪与工件的相对位置的微小变动会引起焊接电流的明显的增大或减小。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12从图3.13中可以看见,当焊枪靠近工件时会使电阻减小从而使焊接电流立刻增大,立刻将焊丝多熔化一些,使电弧长度和电流恢复到设定值。这减小了焊工操作对焊接特性的影响,使该方法对操作人员不敏感,因此操作容易掌握。如果改变设备的调节机置,将导致操作特性的极大变化。首先所关注的是熔化金属从电极端部穿过电弧区到达母材的过渡方式。对于气体保护焊,

18、有四种基本的过渡方式,它们是射流射流过渡(渡(spray)、熔滴)、熔滴过渡渡(globular)、脉冲、脉冲过渡渡(pulsed arc)和短路和短路过渡渡(short-circuiting)。图3.14给出了四种过渡方式中的三种。它们的特性完全不同以至几乎认为是四种独立的焊接方法。每种特定的过渡方式都有特定的优点和局限,因此有不同的适用范围。过渡方式由包括保护气体、电流和电压以及电源特性在内的若干因素决定。这四种不同的过渡方式的一个基本特性就是向工件传送不等的热量。射流过渡被认为热量最高,接下来是脉冲过渡、熔滴过渡,最后是短路过渡。因而,在平焊位置,射流过渡最适合厚板以及全焊透接头。第三章

19、金属第三章金属连接及切割工接及切割工艺 2011-11-12熔滴过渡能产生大量的热量以及熔敷金属,但操作稳定性略有下降,容易产生飞溅。脉冲气体保护焊要求焊接电源能够产生直流脉冲输出,并且焊工能够准确地对脉冲进行程控,使峰值电流和基值电流进行组合,从而增加对热输入和工艺稳定性的控制。焊工能够对峰值脉冲电流的值和宽度进行设置。这样在焊接过程中,焊接电流能够在峰值脉冲电流和基值脉冲电流之间变换,并且,二者均可以通过焊机进行控制。短路过渡向母材传送的热量最少,这使得它成为薄板焊接和由于装配导致的间隙过宽的接头焊接的首选。短路过渡方式具有冷却的特性,这是因为电极实际上与母材接触,在焊接循环中产生部分短路

20、。这样电弧是间歇地产生和消失。在电弧消失的这段期间,会发生冷却现象从而减小薄板材料烧穿的倾向。短路过渡用于厚板焊接时必须特别小心,因为热量不足容易产生未熔合。正如所提及的那样,保护气体对过渡方式有着重要的影响作用。在混合气体中,只有在至少至少80%氩气含量气含量的情况下,射流过渡才能产生。CO2气体广泛的用于碳钢的气体保护焊,这主要是因为其低廉的成本和优异的熔透特性。然而,它仍有缺点,这就是要产生大量的飞溅,而这些飞溅必须去除,因而降低了生产效率。优缺点:缺点:第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12由于没有焊后必须去除的焊渣,GMAW非常适合自动化和机器人焊接,或其

21、它高效生产情况。这是这种工艺的主要优点之一。由于焊后极少或没有清理要求,操作人员总的生产效率得到极大的提高。这个效率由于使用焊丝盘而得到进一步的提高,连续的焊丝不需要象使用单根焊条的手工电弧焊那样经常更换。所以节约下来的时间可以用于完成更多的焊接生产。GMAW的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。该工艺的另外一个优

22、点是可可见性性。因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况,从而改善控制。使用保护气体代替焊剂,确实会得到一些好处,但同样被认为是有局限的,这是因为气体是焊接过程中保护和清洁熔池的主要方法。如果母材过脏,单靠保护气体不足以避免气孔的产生。GMAW还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。正是这个原因,气体保护焊不大适合工地焊接。应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。另一个缺点是设备要求比手工电弧焊的设备复杂。这增加了由于机械故障

23、而导致焊接质量问题的可能性。诸如焊枪内衬和导电嘴的磨损会改变送丝和电特性从而产生有缺陷的焊缝。主要的问题已经讨论过。他们是:由于污染或保护不良产生的气孔,厚板焊接采用短路过渡产生的未熔合,焊枪衬里和导电嘴磨损而产生的电弧不稳定。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12如何解决问题?为了减少气孔产生的可能性,焊前应对部件进行清理,并用围栏或屏风保护焊接区域避免过强的风。如果气孔仍然存在,就应当检查所用的气体,以保证不存在过量的潮气。未熔合的确是GMAW的一个问题,特别是采用短路过渡时。这有一部份的原因是因为这种焊接工艺没有使用焊剂,是一种“明弧焊”,。由于没有了焊剂对电

24、弧热量的保护,所以容易使焊工认为母材中有高大量的热量。这是一种误觉,所以,焊工必须明白这种情况并确保电弧能熔化母材。最后,设备应得到良好的保养,以减轻诸如送丝不稳定所造成的问题。每次更换送丝轮时,应当用干净的压缩空气吹扫内衬,清除可能产生阻塞的微粒。如果送丝仍有问题,就应当更换内衬。导电嘴应定期更换。导电嘴磨损后,接触点发生了变化,使焊丝伸长量增加,然而焊工并不知道。焊丝伸长量是导电嘴到焊丝端部的距离,参见图3.15。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.3 药药芯芯焊丝电焊丝电弧弧焊焊(FCAW)下一种介绍的工艺是药芯焊丝电弧焊。它与气体保护焊非常相似,差别在

25、药芯焊丝焊采用的是管状焊丝,其中装有粒状的焊剂,而不是气体保护焊所用的实芯焊丝。其差别可以从图3.16中看到,图中给出了采用自保护药芯焊丝焊焊接的工件和焊接过程中电弧区域的特写。图中显示管状的焊丝通过焊枪中的导电嘴送进,并在焊丝和工件之间产生电弧。随着向前焊接而熔敷焊缝金属,和手工电弧焊一样,在焊缝金属上覆盖着一层焊渣。根据使用的焊丝类型不同,可以对药芯焊附带或不附带额外的保护气体。有些焊丝被设计成靠内部焊剂提供所有需要的保护,它们被称为自保护性。其它的焊丝要求附加的保护气体提供附加的保护。同其它焊接工艺一样,FCAW有一个系统用于标识各种类型的焊丝,见图3.17。查阅所有类型的焊丝会发现,它

26、规定了极性,保护要求,化学成分和焊接位置。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12标识以字母”E”开头表示焊丝。第一位的数字表示焊缝熔敷金属的抗拉强度,单位是10000磅/英寸2,如“7”表示焊缝熔敷金属的抗拉强度至少为70,000psi.第二个数字是“0”或“1”。“0”表示这种焊丝只适用于平焊或角焊缝的横焊,而“1”说明该焊丝可用于所有位置。接下来的一位是字母“T”,它表示管状管状焊丝。然后是一横线和一个数字,数字表示按焊缝熔敷金属化学成分进行的特定分类,电流类型,极性,是否需要保护气体,以及其它用于分类的特定信息。例如:例如:E70T-7根据这个标识系统,能够对

27、焊丝是否需要附加保护气体进行明确分类。这对焊接检验师十分重要,因为药芯焊丝在有或没有额外保护气体的情况下均可焊接。图3.18是两种类型的焊枪。一些焊丝分类为可以在只有自保护,没有附加保护的情况下使用。这些焊丝使用后缀数字3,4,6,7,8,10,11,13和14表示。而另外一些焊丝用后缀数字1,2,5,9或12表示要求额外的保护来辅助保护熔化的金属。根据应用情况,两种类型的焊丝均能提供优良的性能。另外,后缀G和GS分别表示多道焊和单道焊。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12FCAW使用的设备与GMAW的基本一致,参见图3.19。所不同的是FCAW可能需要更高容量的

28、焊枪和电源,对于自保护型焊丝和送丝机构,不需要附带保护气体装置。和GMAW一样,FCAW使用平特性直流电源。根据所使用的焊丝类型,使用直流反接(DCEP)(1,2,3,4,6,9,12)或直流正接(DCEN)(7,8,10,11,13,14)或二者均可(DCEP,DCEN)(5)。优优缺点:缺点:药芯焊丝焊工艺由于被一些工业应用所选用而迅速得到认可。它在污染表面上的良好表现和高熔敷效率帮助FCAW在一些应用中取代了SMAW和GMAW。药芯焊工艺在工业应用中主要用于铁基金属。在车间焊和工地焊应用中均能获得满意的效果。虽然药芯焊丝主要适于铁基金属制造(碳钢和不锈钢),一些非铁基金属也能的到很好的应

29、用。FCAW获得广泛的认可,是因为它能提供优良的性能。可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。它是手工焊接工艺中效率最高的。这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12然而,检验师

30、应当明白该工艺有它的局限。首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。由于存在焊剂,在焊接过程中会产生大量的烟。长时间暴露在没有通风条件的地方会危害焊工的健康。这些烟还会降低焊工的视线,会给接头中的电弧正确操作带来困难。虽然可以采用烟雾抽除系统,但要在焊枪加上附件,这会增加其重量并降低焊工的视线。当采用附加保护气体时,它还会扰乱保护气氛。即使FCAW被认为是有烟工艺,但它在单位熔敷金属时产生的烟量没有SMAW多。FCAW所要求的设备比SMAW的复杂,因而其先期成本和机械故障的可能性限制了它在一些环境中的使用。可能存在的焊接缺陷?和所有的工艺一样,FCAW自身存在一些

31、问题。首先是于焊剂有关。由于焊剂的存在,在层间清理不当或操作技术不当时,会有焊渣残留在焊缝金属中的可能性。对于FCAW,至关重要的是焊接速度要足够快,以保持电弧在熔池的前缘。当焊接速度太慢,使电弧在熔池的中前部或后部,熔化的焊渣会被卷入熔池中形成夹渣。另一个自身的问题与送丝机构有关。与GMAW情形一样,缺少保养维护会导致焊丝送进问题,这会影响焊缝的质量。FCAW同样产生包括未焊透、夹渣和气孔在内的典型缺陷。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.4 钨钨极极氩氩弧弧焊焊(GTAW)下一种介绍的工艺是钨极氩弧焊,与其它已经讨论过的焊接方法相比,有许多有趣的不同。图3

32、.20显示出该工艺的基本要素。GTAW最重要的特性是电极在焊接过程中不会消耗。它采用纯钨或钨合金制造,具有承受高温的能力,甚至是电弧的高温。因而,当电流通过时,就在钨极和工件之间建立起电弧。当需要填充金属,必须额外添加,通常采用手工方式,或采用机械送丝系统。电弧和金属采用惰性气体保护,这些气体从包围着钨极的喷嘴中流出。因为没有使用焊剂,熔敷金属不需要清渣。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12同其它方法一样,有一个系统使各种类型的钨极容易辩识。这个标识由一系列的字符组成,它以字符“E”开开头表示表示电极极。接下来的字母“W”是是钨的化学符号的化学符号。然后是字符的数

33、字,它们表示合金类型。由于只有5种不同种不同的类型,它们通常使用颜色系统来区分。表中给出了分类和对应的颜色代码。氧化钍或氧化锆的加入可帮助电极改善电特性,其结果是使钨极的发射能力地到轻微的提高。简单的说,就是氧化钍或氧化锆型的钨极比纯钨更容易起弧。纯钨在加热时有形成“球”端的能力,所以经常用于铝焊接。和尖形钨极相比,球形钨极具有较低的电流集中,从而减小了钨极损坏的可能性。极是铁基金属焊接中最常用的电极。用于GTAW的填充材料标识采用“ER”作前缀,后接化学成分。外购实心光焊丝的长度一般是36 英寸,并在两端作有标识。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12GTAW可以

34、采用直流反接DCEP,直流正接DCEN或交流AC。直流反接(相对工件来讲)DCEP将在电极上产生较多的热量,而直流正接DCEN则在工件上产生更多的热量。交流AC则在电极和工件之间变换热量。交流AC主要用于铝焊接,这是因为电流的变换会提高清洁作用,从而提高焊接质量。直流正接DCEN通常用于钢的焊接。图3.21显示不同电流和极性的效果,包括熔深、氧化物的清洁作用、电弧的热量分配和电极的电流承载能力。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12上面提到,GTAW使用惰性气体作为保护气体。所谓惰性,我们是指这种气体不会和金属发生反应,但可以保护金属免受污染。氩气和氦气是两种用于G

35、TAW的惰性气体。一些机械化的不锈钢焊接生产,使用由氩气和少量的氢气组成的保护气体,但这在钨极氩弧焊应用中只占极少的一部分。GTAW的设备其主要电源部分如同SMAW的设备一样,采用陡降特性的电源。由于使用气体,需要有设备来控制和传送气体。优缺点:缺点:GTAW在许多工业领域有着广泛的应用。它能焊接几乎所有的材料,因为电极在焊接过程没有熔化。它具有在极低电流情况下焊接的能力,使得钨极氩弧焊可用于极薄材料的焊接(薄至0.005英寸)。它特有的清洁和操作可控特性,使它成为苛刻条件下应用的首选,这些应用如太空、食品和药品加工,石化和动力管道工业。GTAW的主要优势在于它焊出的焊缝具有很高的质量和优异的

36、外观质量。同样,由于没有焊剂,该方法非常干净,不需要焊后清理焊渣。如前所说,能焊接极薄的材料。由于它的特性,它适合焊接几乎所有的金属,而其中的大部分材料采用其它的焊接方法会很不容易。如果设计允许,这些材料的焊接可以不用填充材料。在需要时,有各种类型的丝状填充材料可用于各种合金材料。万一某种特定的合金材料,市场上又没有可选用的焊丝,那么可以简单地从这种母材上剪一块,作成窄条状当作焊丝,用手工方法送入焊接区。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12与其优点相对,它还是有一些缺点。首先,GTAW是所有可选用的焊接方法中最慢的。在它产生干净的焊缝熔敷时,它却对污染的容许程度很

37、低。所以,焊前必须对母材和填充材料进行认真的清理。当采用手工方法,GTAW要求很高的技能水平;焊工必须协调一只手控制电弧而另一只手随之送进填充材料。GTAW通常被选择用于需要高质量保证的地方,而增加的成本能抵消这些限制。该方法其中的一个缺点就是它对污染很敏感。如果遇到污染或潮气,无论来自母材、填充材料或是保护气体,都将可能在熔敷焊缝上引起气孔。当发现气孔,就意味着工艺失控,需要进行一些保护措施的检查。检查可以确定污染的来源,从而消除污染。另一个GTAW特有的内在缺点是夹钨。顾名思义,这种缺陷是由于钨极上的小块熔入焊缝金属中。夹钨的产生有很多原因,主要的列在下表中。夹钨产生的原因(1)钨极端部和

38、熔化金属接触;(2)填充材料与热电极端部接触;(3)电极端部被飞溅污染;(4)电流过大超过了电极规格和型号的限制;(5)电极伸出夹头过大,超过了正常的距离,导致电极过热;(6)电极夹头夹紧不当;(7)保护气体流量不当或过大的风导致电极端部氧化;(8)电极有缺陷,如开裂、裂纹;(9)使用了错误的保护气体;和(10)电极端部打磨不当。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.5 埋弧埋弧焊焊(SAW)最后一个所讨论的常用焊接方法是埋弧焊。这种方法是目前所提及的在焊缝金属熔敷效率上最高的一种典型焊接方法。SAW用实芯焊丝连续送进,焊丝产生的电弧完全被颗粒状的焊剂层所覆盖;

39、因而被命名成“埋弧”焊。图3.23显示该工艺是如何形成焊缝的。正如所提到的,焊丝送进到焊接区域的方式与气体保护焊和药芯焊丝焊非常一致。而最大的差别是保护方式。对于埋弧焊工艺,颗粒状焊剂被置于焊丝的前部或周围来实现对熔化金属的保护。在焊接过程中,在焊道上有一层渣渣和仍然为颗粒状的焊剂。焊渣清除后通常被丢弃,虽然有技术能在一些应用中,将一部分焊渣和新焊剂混合回用。如果小心作好了防污染措施,颗粒状的焊剂是可以回收回用。在某些情况下如果对焊剂的清洁度要求非常高,那么不推荐焊剂回用。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12由于SAW的焊丝和焊剂是各自分开的,所以在一个特定的应用

40、中会有多种组合可选用。对于合金化焊缝,一般有两种组合:合金焊丝配合中性焊剂,或低碳焊丝配合合金焊剂。因此,为了正确地描述SAW的填充材料,美国焊接学会的标识系统包括了指明焊丝和焊剂。图3.24显示了焊丝/焊剂分类系统的各个部分,并附有两个例子。F7A6-EM12K是一个完整的标识。焊丝EM12K配合使用,焊缝金属具有在焊态下抗拉强度不小于70,000psi(480Mpa),却贝V型冲击韧性在-60F(-51C)的温度下不小于20ft-lb(27J)。F7A4-EC1 是一个完整焊剂的标识这种焊剂用于焊缝金属具有在焊态下抗拉强度不小于70,000psi,却贝V型冲击韧性在-40F(-40C)的温

41、度下不小于20ft-lb(27J)。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12埋弧焊设备由几个部分组成,见图3.25。由于该工艺能够实现全机械化或半自动化,所以二者的设备略有不同。然而,无论那种情况,都要求有一电源。虽然大部分埋弧焊使用平特性电源,仍有相当数量的应用选择陡降特性电源。用送丝机构把焊丝通过电缆内衬送到焊枪,这与气体保护焊和药芯焊丝焊一样。焊剂必须放置在焊接区域;对于机械系统,焊剂一般放置在机头上部的焊剂料斗中,靠重力送料,通过围绕导电嘴的送料嘴把焊剂送至电弧前面一点或周围。对于半自动埋弧焊,焊剂采用压缩空气强制送到焊枪,空气使颗粒状焊剂“流化”,使之容易流

42、动。或是通过直接连在手提焊枪上的料斗。设备的另外一个差异就是在交流或直流(任何极性)之间选择。焊接电流的类型影响熔深和焊道的外形。对于一些应用,可以使用多丝焊。这些焊丝可能采用一个电源供电,或需要多个电源。多丝的使用可以提供多样性的工艺。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12优缺点:缺点:SAW已在许多工业领域得到认可,并可用在许多金属上。由于很高的熔敷效率,它在表面堆焊上表现出很高的效率。在表面需要改善耐腐蚀或耐磨性能的情况下,在薄弱金属表面覆盖耐蚀或耐磨焊缝是一种非常经济的办法。如果用机械方法实现这种应用,埋弧焊是最佳选择。可能SAW最大的优势是它的高熔敷效率。

43、与其它常用方法相比,它有着很高的焊缝金属熔敷效率。埋弧焊工艺对操作工有很高的吸引力,因为没有可见的弧光,允许操作工在没有佩带防护镜和其他厚重保护服的情况下对焊接进行控制。另外一个优点是它比其它一些焊接方法产生更少的烟。该方法的其他一个特点是它在许多应用中具有获得满意熔深的能力。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12SAW的局限是它只能在焊剂可以被支撑在焊接接头的位置进行焊接。当焊接不是在常规的平焊或横焊位置进行时,就需要一些装置来保持焊剂在适当的位置,使焊接可以进行。和大多数机械方法一样,SAW的另一个局限是它可能需要很多工具工装和变位设备。和其它使用焊剂的方法一样

44、,完工焊缝上有一层必须去掉的焊渣。如果焊接参数不恰当,则焊缝成形会使清渣变的非常困难。最后一个缺点与在焊接过程中覆盖在电弧上的焊剂有关。当它很好地保护了焊工免受电弧伤害的时候,也阻挡了焊工地准确观察电弧在接头中的位置。对于采用机械设置方式,建议可跟踪全长度接头的偏移情况。如果电弧方向不当,则会产生未熔合。SAW有一些固有的问题。首先是与颗粒状焊剂有关。与低氢型的SMAW焊条一样,埋弧焊的焊剂需要保护起来免遭潮气。在使用前,可能需要将焊剂存储在加热的容器中。如果焊剂受潮,可能会产生气孔和焊道下裂纹。SAW的另一个问题是凝固裂纹。这是焊道宽度和深度之比过大时产生的。也就是说焊道的宽度远大于深度,反

45、之亦然,则在固化过程中会产生中心收缩裂纹。图3.26显示出一些会产生裂纹的情况。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.6 等离子等离子焊焊(PAW)下面讨论等离子焊。等离子是指电离的气体。对于任何电弧焊工艺,都有等离子产生。然而,之所以命名为等离子焊,是因为等离子区域的强度。简单的了解,PAW可能容易被误认为GTAW,因为设备非常相似。其典型设备配置见图3.27。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12GTAW和PAW都使用同样类型的电源。然而,当仔细观察焊枪,会发现明显

46、的差异。图3.28显示了两种类型焊枪的比较图,以及产生的不同的热量和熔深。GTAW和PAW都同样使用钨极来起弧。然而,PAW焊枪的陶瓷喷嘴中有一个的铜孔(压缩喷嘴)。等离子气体被迫通过这个孔和电弧,从而形成了压缩电弧。这种压缩或是挤压使得电弧更集中,因而更强烈。有一个方法可以看到GTAW 和PAW之间的电弧强度差别,就是PAW的焊嘴上可能会有水冷软管。将GTAW比做清清的薄雾的话,PAW就是有强大力量的集中的蒸汽。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12等离子弧可以分为两类,即转移型和非转移型电弧。见图3.29。对于转移型电弧,电弧建立在钨极和工件之间。而非转移型电弧

47、则采用另外的方法,电弧建立在钨极和铜孔管上。转移型电弧一般用于导热性能良好的材料的焊接和切割,这是因为在工件上会产生大量的热量。非转移型电弧更适合导热性能不好的材料的切割,这时工件上的热量必须最小。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12GTAW和PAW的类似之处还在与其设备。焊接电源在很多方面都类似。见图3.30,但有一些必须的附加设备,其中包括等离子控制台和等离子气源。正如前面所讨论的,焊枪有一些轻微的差别,因此有必要仔细检查其内部结构。图3.31显示出典型的手工等离子焊枪的一些内部结构。如图所示,需要两个独立的气体:保保护护气体和孔气(等离子气气体和孔气(等离子

48、气)。氩氩气气是这两种气体最常用的气体。然而,焊接各种不同的金属可能会使用氦气或是氩气/氦气,氩气/氢气的混合气体。PAW的主要用途与GTAW类似。PAW可用于同样的材料和厚度。在需要热源集中的地方,可以选择PAW。它可以在厚达1/2英寸的材料上采用被称为“小孔效应焊接”的技术实现全焊透焊缝。图3.32显示了小孔效应焊缝的典型外观。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-12小孔效应焊接是在没有间隙的I型对接接头上进行的。热量集中的电弧熔透整个厚度并形成小孔。在焊接过程中,小孔在母材边缘熔化形成的接头上移动,在电弧过去之后,熔化金属流到一起并固化。这可以在接头没有精细准备

49、的情况下获得高质量的焊缝,而且有着比GTAW更快的焊接速度。PAW有一个优点,前面已经提到,就是它能提供非常集中的热源。这样可以得到更高的焊接速度和更小的变形。由于所采用的焊枪到工件的距离较远,所以焊工有良好的视线观察焊缝的成形。由于钨极缩在焊枪内,焊工减少了接触熔化金属并形成夹钨的情况。在该工艺使用小孔模式是所期望的。小孔可以正面地指明熔透和焊缝的均匀。焊缝均匀是由于等离子焊对弧长的变化不敏感。由于有对电弧的矫正作用存在,使得焊枪到工件的距离在较大范围内变化而不会影响它的熔化能力。PAW被局限在焊接1英寸及以下厚度的材料。刚开始时设备成本会较GTAW略高,这主要是因为需要配备其他的附件。最后

50、,由于PAW比GTAW的设备设置更复杂,PAW的操作人员技能要求更高。这种工艺会遇到的两种类型的金属物夹杂缺陷。夹钨可能是由于电流过高的造成的,事实上由于钨极内凹有利于避免这种情况的发生。电流过高会造成铜管孔熔化并熔进焊缝金属中。采用小孔效应技术焊接时另一个可能遇到的问题是在产生中空。这是因为在焊缝的尾端小孔未能填满所产生的柱形空洞,它会在厚度方向上贯穿整个焊缝。在采用小孔技术时,由于电弧和接头都很窄,还存在产生未熔合的可能性。由于这个原因,甚至很小的跟踪偏离都会引起沿接头的未熔合。第三章金属第三章金属连接及切割工接及切割工艺 2011-11-121.7 电电渣渣焊焊(ESW)下一个是电渣焊,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 一级建造

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com