高中化学选修3知识点总结.pdf

上传人:l*** 文档编号:73693925 上传时间:2023-02-21 格式:PDF 页数:10 大小:619.35KB
返回 下载 相关 举报
高中化学选修3知识点总结.pdf_第1页
第1页 / 共10页
高中化学选修3知识点总结.pdf_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《高中化学选修3知识点总结.pdf》由会员分享,可在线阅读,更多相关《高中化学选修3知识点总结.pdf(10页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、高中化学选修 3 知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级(1)能层和能级的划分 在同一个原子中,离核越近能层能量越低。同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为 s、p、d、f。任一能层,能级数等于能层序数。s、p、d、f可容纳的电子数依次是 1、3、5、7的两倍。能层不同能级相同,所容纳的最多电子数相同。(2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。2、构造原理 (1)构造

2、原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。(2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。(3)不同能层的能级有交错现象,如E(3d)E(4s)、E(4d)E(5s)、E(5d)E(6s)、E(6d)E(7s)、E(4f)E(5p)、E(4f)E(6s)等。原子轨道的能量关系是:ns(n-2)f (n-1)d np(4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2;最外层不超过8 个电子;次外层不超过18 个电子;倒

3、数第三层不超过32个电子。(5)基态和激发态 基态:最低能量状态。处于 最低能量状态 的原子称为 基态原子。激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子 。原子光谱:不同元素的原子发生电子跃迁时会吸收(基态激发态)和放出(激发态较低激发态或基态)不同的能量(主要是光能),产生不同的光谱原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。3、电子云与原子轨道(1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外

4、出现的概率密度分布,是核外电子运动状态的形象化描述。(2)原子轨道:不同能级上的电子出现 概率 约为 90%的电子云空间轮廓图 称为原子轨道。s 电子的原子轨道呈 球形对称,ns能级各有 1 个原子轨道;p电子的原子轨道呈纺锤形,np 能级各有 3 个原子轨道,相互垂直(用 px、py、pz表示);nd 能级各有 5 个原子轨道;nf 能级各有 7 个原子轨道。4、核外电子排布规律(1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。(2)泡利原理:1 个原子轨道里最多只能容纳2 个电子,且自旋方向相反。(3)洪特规则:电子排布在同一能级的各个轨道时

5、,优先占据不同的轨道,且自旋方向相同。(4)洪特规则的特例:电子排布在 p、d、f 等能级时,当其处于全空、半充满或全充满时,即 p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。电子数(5)(n-1)d 能级上电子数等于 10 时,副族元素的族序数=ns 能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的

6、族。(1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。(2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。(3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成 5 个区,分别为 s 区、p 区、

7、d 区、f区和 ds 区,除 ds 区外,区的名称来自按构造原理最后填入电子的能级的符号。2、元素周期律 元素的性质随着核电荷数的递增发生周期性的递变,叫做元素周期律。元素周期律主要体现在核外电子排布、原子半径、主要化合价、金属性、非金属性、第一电离能、电负性等的周期性变化。元素性质的周期性来源于原子外电子层构型的周期性。(1)同周期、同主族元素性质的递变规律 同周期(左右)同主族(上下)原子结构 核电荷数 逐渐增大 增大 能层(电子层)数 相同 增多 原子半径 逐渐减小 逐渐增大 元素性质 化合价 最高正价由+1+7负价数=(8族序数)最高正价和负价数均相同,最高正价数=族序数 元素的金属性

8、和非金属性 金属性逐渐减弱,非金属性逐渐增强 金属性逐渐增强,非金属性逐渐减弱 第一电离能 呈增大趋势(注意反常点:A 族和A族、A 族和A 族)逐渐减小 电负性 逐渐增大 逐渐减小(2)微粒半径的比较方法 同一元素:一般情况下元素阴离子的离子半径大于相应原子的原子半径,阳离子的离子半径小于相应原子的原子半径。同周期元素(只能比较原子半径):随原子序数的增大,原子的原子半径依次减小。如:NaMgAlSiPSCl 同主族元素(比较原子和离子半径):随原子序数的增大,原子的原子半径依次增大。如:LiNaKRbCs,F-Cl-Br-Na+Mg2+Al3+(3)元素金属性强弱的判断方法 金 属 性 比

9、 较 本质 原子越易失电子,金属性越强。判 断 依 据 1.在金属活动顺序表中越靠前,金属性越强 2.单质与水或非氧化性酸反应越剧烈,金属性越强 3.单质还原性越强或离子氧化性越弱,金属性越强(电解中在阴极上得电子的先后)4.最高价氧化物对应水化物的碱性越强,金属性越强 5.若 xn+yx+ym+则 y 比 x 金属性强 6.原电池反应中负极的金属性强 7.与同种氧化剂反应,先反应的金属性强 8.失去相同数目的电子,吸收能量少的金属性强(4)非金属性强弱的判断方法 非 金 属 性 比 较 本质 原子越易得电子,非金属性越强 判 断 方 法 1.与 H2化合越易,气态氢化物越稳定,非金属性越强

10、2.单质氧化性越强,阴离子还原性越弱,非金属性越强(电解中在阳极上得电子的先后)3.最高价氧化物的水化物酸性越强,非金属性越强 4.An-+BBm-+A 则 B 比 A 非金属性强 5.与同种还原剂反应,先反应的非金属性强 6.得到相同数目的电子,放出能量多的非金属性强 (三)共价键 1、共价键的成键本质:成键原子相互接近时,原子轨道发生重叠,自旋方向相反的未成对电子形成共用电子对,两原子核间电子云密度增加,体系能量降低。2、共价键类型:(1)键和键 键 键 成键方向 沿键轴方向“头碰头”平行或“肩并肩”电子云形状 轴对称 镜像对称 牢固程度 强度大,不易断裂 强度小,易断裂 成键判断规律 单

11、键是键;双键有一个是键,另一个是键;三键中一个是键,另两个为键。(2)极性键和非极性键 非 极 性 键 极 性 键 定义 由同种元素的原子形成的共价键,共用电子对不发生偏移 由不同种元素的原子形成的共价键,共用电子对发生偏移 原子吸引电子能力 相同 不同 共用电子对位置 不偏向任何一方 偏向吸引电子能力强的原子一方 成键原子的电性判断依据 不显电性 显电性 举例 单质分子(如 H2、Cl2)和 某 些 化 合 物(如Na2O2、H2O2)中含有非极性键 气态氢化物,非金属氧化物、酸根和氢氧根中都含有极性键(3)配位键:一类特殊的共价键,一个原子提供空轨道,另一个原子提供一对电子所形成的共价键。

12、配位化合物:金属离子与配位体之间通过配位键形成的化合物。如:Cu(H2O)4SO4、Cu(NH3)4(OH)2、Ag(NH3)2OH、Fe(SCN)3等。配位化合物的组成:3、共价键的三个键参数 概念 对分子的影响 键长 分子中两个成键原子核间距离(米)键长越短,化学键越强,形成的分子越稳定 键能 对于气态双原子分子 AB,拆开 1molA-B 键所需的能量 键能越大,化学键越强,越牢固,形成的分子越稳定 键角 键与键之间的夹角 键角决定分子空间构型 (1)键长、键能决定共价键的强弱和分子的稳定性,键角决定分子空间构型和分子的极性。(2)键能与反应热:反应热生成物键能总和反应物键能总和 (四)

13、分子的空间构型 1、等电子原理 原子总数相同、价电子总数相同的分子具有相似的化学键特征,许多性质是相似的,此原理称为等电子原理。(1)等电子体的判断方法:在微粒的组成上,微粒所含原子数目相同;在微粒的构成上,微粒所含价电子数目相同;在微粒的结构上,微粒中原子的空间排列方式相同。(等电子的推断常用转换法,如 CO2=CO+O=N2+O=N2O=N2+N=N3或 SO2=O+O2=O3=N+O2=NO2)(2)等电子原理的应用:利用等电子体的性质相似,空间构型相同,可运用来预测分子空间的构型和性质。2、价电子互斥理论:(1)价电子互斥理论的基本要点:ABn型分子(离子)中中心原子 A 周围的价电子

14、对的几何构型,主要取决于价电子对数(n),价电子对尽量远离,使它们之间斥力最小。(2)ABn型分子价层电子对的计算方法:对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl5中 O、S 作为配位原子时按不提供价电子计算,作中心原子时价电子数为6;离子的价电子对数计算 如:NH4+:;SO42-:3、杂化轨道理论(1)杂化轨道理论的基本要点:能量相近的原子轨道才能参与杂化。杂化后的轨道一头大,一头小,电子云密度大的一端与成键原子的原子轨道沿键轴方向重叠,形成键;由于杂化后原子轨道重叠更大,形成的共价键比原有原子轨道形成的共价键稳定。杂化轨道能量相同,成分相同,如

15、:每个 sp3杂化轨道占有 1 个 s 轨道、3个 p 轨道。杂化轨道总数等于参与杂化的原子轨道数目之和。(2)s、p 杂化轨道和简单分子几何构型的关系 杂化类型 sp sp 2 sp 3 sp 3不等性杂化 轨道夹角 180 o 120 o 109o28 中心原子位置 A,B A A A A A 中心原子孤对电子数 0 0 0 1 2 3 分子几何构型 直线形 平 面 三角形 正四面体形 三角锥形 V字形 直 线形 实例 BeCl2、Hg Cl2 BF3 CH4、SiCl4 NH3、PH3 H2O、H2S HCl(3)杂化轨道的应用范围:杂化轨道只应用于形成键或者用来容纳未参加成键的孤对电子

16、。(4)中心原子杂化方式的判断方法:看中心原子有没有形成双键或叁键,如果有 1 个叁键,则其中有2 个键,用去了2 个 p 轨道,形成的是sp 杂化;如果有 1 个双键则其中有1 个键,形成的是 sp 2杂化;如果全部是单键,则形成的是 sp 3杂化。4、分子空间构型、中心原子杂化类型和分子极性的关系 分子(离子)中 心 原子 价 电子对 杂化类型 VSEPR 模型 分子空间构型 键角 分子的极性 CO2 2 sp 直线 直线形 180 o 非 SO2 3 sp 2 平面三角 V 字形 极 H2O、OF2、3 sp 3 平面三角 V 字形 极 HCN 2 sp 直线 直线形 180 o 极 N

17、H3 4 sp 3 正四面体 三角锥形 107 o18 极 BF3、SO3 3 sp 2 平面三角 平面三角形 120 o 非 H3O+4 sp 3 正四面体 三角锥形 107 o18 CH4、CCl4 4 sp 3 正四面体 正四面体形 109o28 非 NH4+4 sp 3 正四面体 正四面体形 109o28 非 HCHO、COCl2 3 sp 2 平面三角 平面三角形 极 (五)分子的性质 1、分子间作用力(范德华力和氢键)(1)分子间作用力和化学键的比较 化学键 分子间作用力 概念 相邻原子间强烈的相互作用 分子间微弱的相互作用 范围 分子内或某些晶体内 分子间 能量 键能一般为120

18、800kJmol1 约几到几十 kJmol1 性质影响 主要影响物质的化学性质(稳定性)主要影响物质的物理性质(熔沸点)(2)范德华力与氢键的比较 范德华力 氢键 概念 物质分子间存在的微弱相互作用 分子间(内)电负性较大的成键原子通过 H 原子而形成的静电作用 存 在 范围 分子间 分子中含有与 H 原子相结合的原子半径小、电负性大、有孤对电子的 F、O、N 原子 强 度 比较 比化学键弱得多 比化学键弱得多,比范德华力稍强 影 响 因素 随分子极性和相对分子质量的增大而增大 性 质 影响 随范德华力的增大,物质的熔沸点升高、溶解度增大 分子间氢键使物质熔沸点升高硬度增大、水中溶解度增大;分

19、子内氢键使物质熔沸点降低、硬度减小 2、极性分子和非极性分子(1)极性分子和非极性分子 非极性分子:从整个分子看,分子里电荷的分布是对称的。如:只由非极性键构成的同种元素的双原子分子:H2、Cl2、N2等;只由极性键构成,空间构型对称的多原子分子:CO2、CS2、BF3、CH4、CCl4等;极性键非极性键都有的:CH2=CH2、CHCH、。极性分子:整个分子电荷分布不对称。如:不同元素的双原子分子如:HCl,HF 等。折线型分子,如 H2O、H2S 等。三角锥形分子如 NH3等。(2)共价键的极性和分子极性的关系:两者研究对象不同,键的极性研究的是原子,而分子的极性研究的是分子本身;两者研究的

20、方向不同,键的极性研究的是共用电子对的偏离与偏向,而分子的极性研究的是分子中电荷分布是否均匀。非极性分子中,可能含有极性键,也可能含有非极性键,如二氧化碳、甲烷、四氯化碳、三氟化硼等只含有极性键,非金属单质 F2、N2、P4、S8等只含有非极性键,C2H6、C2H4、C2H2等既含有极性键又含有非极性键;极性分子中,一定含有极性键,可能含有非极性键,如 HCl、H2S、H22等。(3)分子极性的判断方法 单原子分子:分子中不存在化学键,故没有极性分子或非极性分子之说,如 He、Ne 等。双原子分子:若含极性键,就是极性分子,如 HCl、HBr 等;若含非极性键,就是非极性分子,如 O2、I2等

21、。以极性键结合的多原子分子,主要由分子中各键在空间的排列位置决定分子的极性。若分子中的电荷分布均匀,即排列位置对称,则为非极性分子,如BF3、CH4等。若分子中的电荷分布不均匀,即排列位置不对称,则为极性分子,如 NH3、SO2等。根据ABn的中心原子A的最外层价电子是否全部参与形成了同样的共价键。(或 A 是否达最高价)(4)相似相溶原理 相似相溶原理:极性分子易溶于极性溶剂,非极性分子易溶于非极性溶剂。相似相溶原理的适用范围:“相似相溶”中“相似”指的是分子的极性相似。如果存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。相反,无氢键相互作用的溶质在有氢键的水中的溶解度就比较小。3、

22、有机物分子的手性和无机含氧酸的酸性(1)手性分子 手性分子:具有完全相同的组成和原子排列的一对分子,如同左手与右手一样互为镜像,却在三维空间里不能重叠,互称手性异构体(又称对映异构体、光学异构体)。含有手性异构体的分子叫做手性分子。手性分子的判断方法:判断一种有机物是否具有手性异构体,可以看其含有的碳原子是否连有四个不同的原子或原子团,符合上述条件的碳原子叫做手性碳原子。手性碳原子必须是饱和碳原子,饱和碳原子所连有的原子和原子团必须不同。(2)无机含氧酸分子的酸性 酸的元数=酸中羟基上的氢原子数,不一定等于酸中的氢原子数(有的酸中有些氢原子不是连在氧原子上)含氧酸可表示为:(HO)mROn,酸

23、的强度与酸中的非羟基氧原子数n 有关,n 越大,酸性越强。n=0 弱酸 n=1 中强酸 n=2强酸 n=3 超强酸 (六)晶体的结构和性质 1、四大晶体的比较 2、典型晶体的结构特征(1)NaCl 属于离子晶体。晶胞中每个Na+周围吸引着 6 个 Cl,这些 Cl构成的几何图形是正八面体,每个 Cl周围吸引着 6 个 Na+,Na+、Cl个数比为 1:1,每个 Na+与 12 个 Na+等距离相邻,每个氯化钠晶胞含有4 个 Na+和 4 个 Cl。(2)CsCl 属于离子晶体。晶胞中每个Cl(或 Cs+)周围与之最接近且距离相等的 Cs+(或 Cl)共有 8 个,这几个 Cs+(或 Cl)在空

24、间构成的几何构型为立方体,在 类型 比较 离子晶体 原子晶体 分子晶体 金属晶体 构成晶体微粒 阴、阳离子 原子 分子 金属阳离子、自由电子 形成晶体作用力 离子键 共价键 范德华力 微粒间的静电作用 物理性质 熔沸点 较高 很高 低 有高、有低 硬度 硬而脆 大 小 有高、有低 导电性 不良(熔融或水 溶 液 中 导电)绝缘、半导体 不良 良导体 传热性 不良 不良 不良 良 延展性 不良 不良 不良 良 溶解性 易溶于极性溶剂,难溶于有机溶剂 不 溶 于任 何 溶剂 极 性 分子 易溶 于 极性 溶剂;非极性分子 易 溶于 非极性溶剂中 一般不溶于溶剂,钠等可 与水、醇类、酸类反应 典型实

25、例 NaOH、NaCl 金刚石 P4、干冰、硫 钠、铝、铁 每个 Cs+周围距离相等且最近的 Cs+共有 6 个,这几个 Cs+在空间构成的几何构型为正八面体,一个氯化铯晶胞含有 1 个 Cs+和 1 个 Cl。(3)金刚石(空间网状结构)属于原子晶体。晶体中每个 C 原子和 4 个 C 原子形成 4 个共价键,成为正四面体结构,C 原子与碳碳键个数比为 1:2,最小环由 6 个 C 原子组成,每个 C原子被 12 个最小环所共用;每个最小环含有 1/2 个 C 原子。(4)SiO2 属于原子晶体。晶体中每个 Si 原子周围吸引着 4 个 O 原子,每个 O 原子周围吸引着 2 个 Si 原子

26、,Si、O 原子个数比为 1:2,Si 原子与 SiO 键个数比为1:4,O 原子与 SiO 键个数比为 1:2,最小环由 12 个原子组成。(5)干冰 属于分子晶体。晶胞中每个 CO2分子周围最近且等距离的 CO2有 12 个。1 个晶胞中含有 4 个 CO2。(6)石墨 属于过渡性晶体。是分层的平面网状结构,层内 C 原子以共价键与周围的 3个 C 原子结合,层间为范德华力。晶体中每个 C 原子被 3 个六边形共用,平均每个环占有 2 个碳原子。晶体中碳原子数、碳环数和碳碳单键数之比为 2:3。(7)金属晶体 金属 Po(钋)中金属原子堆积方式是简单立方堆积,原子的配位数为 6,一个晶胞中

27、含有 1 个原子。金属 Na、K、Cr、Mo(钼)、W 等中金属原子堆积方式是体心立方堆积,原子的配位数为 8,一个晶胞中含有 2 个原子。金属 Mg、Zn、Ti 等中金属原子堆积方式是六方堆积,原子的配位数为 12,一个晶胞中含有 2个原子。金属 Au、Ag、Cu、Al 等中金属原子堆积方式是面心立方堆积,原子的配位数为 12,一个晶胞中含有4 个原子。3、物质熔沸点高低的判断(1)不同类晶体:一般情况下,原子晶体离子晶体分子晶体(2)同种类型晶体:构成晶体质点间的作用力大,则熔沸点高,反之则小。离子晶体:结构相似且化学式中各离子个数比相同的离子晶体中离子半径小(或阴、阳离子半径之和越小的)

28、,键能越强的,熔、沸点就越高。如 NaCl、NaBr、Nal;NaCl、KCl、RbCl 等的熔、沸点依次降低。离子所带电荷大的熔点较高。如:MgO 熔点高于 NaCl。分子晶体:在组成结构均相似的分子晶体中,式量大的,分子间作用力就大,熔点也高。如:F2、Cl2、Br2、I2和 HCl、HBr、HI 等均随式量增大。熔、沸点升高。但结构相似的分子晶体,有氢键存在熔、沸点较高。原子晶体:在原子晶体中,只要成键原子半径小,键能大的,熔点就高。如金刚石、金刚砂(碳化硅)、晶体硅的熔、沸点逐渐降低。金属晶体:在元素周期表中,主族数越大,金属原子半径越小,其熔、沸点也就越高。如A 的 Al,A 的 Mg,IA 的 Na,熔、沸点就依次降低。而在同一主族中,金属原子半径越小的,其熔沸点越高。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com