马氏体强化机制.doc

上传人:1595****071 文档编号:34035638 上传时间:2022-08-12 格式:DOC 页数:5 大小:51.50KB
返回 下载 相关 举报
马氏体强化机制.doc_第1页
第1页 / 共5页
马氏体强化机制.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《马氏体强化机制.doc》由会员分享,可在线阅读,更多相关《马氏体强化机制.doc(5页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流马氏体强化机制【精品文档】第 5 页2012春季学期材料力学性能课程论文院 (系) 材料科学与工程 专 业 材料科学与工程 学 生 唐 骜 学 号 1091900101 班 号 0919001 铁碳马氏体的强化机制唐骜1091900101摘要:本文以铁碳马氏体的组织形貌以及马氏体转变过程为出发点,引述了马氏体的主要强韧化机制。并通过引用各学者的实验结论,得到了铁碳马氏体的强韧化机理。关键词:马氏体,强韧化机制,高强度钢,低碳钢,时效1. 马氏体概述马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬

2、火),得到的能使钢变硬、增强的一种淬火组织。马氏体最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。 20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、

3、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。2. 马氏体相变特征马氏体转变的一般定义为:过冷奥氏体以较快的速度冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变称为马氏体相变。其主要特点有以下几点:(1)马氏体相变是无扩散相变。马氏体相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的。原子位移的结果产

4、生点阵应变(或形变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。(2)产生表面相变时浮突。马氏体形状改变使先经抛光的试样表面形成浮突。马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘。(3)新相(马氏体)和母相之间始终保持一定的位向关系。马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如镍钢中马氏体在奥氏体()的135上最先形成。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改变。由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终

5、保持一定的位向关系。(4)马氏体相变具有可逆性。当母相冷却时在一定温度开始转变为马氏体,把这温度标作Ms,加热时马氏体逆变为母相,开始逆变的温度标为As。(5)马氏体转变是在一个温度范围内完成的。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变结束。3. 马氏体的强化机制金属的强化机制大致可分为固溶强化机制、第二相强化、形变强化及细晶强化等。近年来对马氏体高强度、高硬度的本质进行了大量研究,认为

6、马氏体的高强度、高硬度是多种强化机制综合作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和细晶强化等。3.1 相变强化马氏体相变的强化重庆316L不锈钢管研究认为:在不锈钢中具有最高硬度的SUS 440(2(13Cr-IC)(640-7001V)属于马氏体系不锈钢,马氏体组织的结构非常微细,而且在其内部存在高密度的位错,若使碳过饱和固溶还能提高强度。另方面,经过最后的回火处理可以得到碳化物等析出物弥散细微分布的组织。马氏体系不锈钢用固溶碳量和加火处理可以调整其强度。例如,SUS 420J2(13Cr-O3C)从i000C的高温奥氏体区急冷时,发生固溶03C的马氏体相变,再

7、经回火热处理就会使碳化物等析出物呈微细弥散分布。其强度可达到约550HV3.2 细晶强化人们早己知道晶粒大小影响金属强度。铁素体晶粒大小对退火的软钢屈服强度的影响,可以看出晶粒直径d与屈服强度间有着直线关系,晶粒越细屈服强度越高。这种屈服强度与晶粒大小间的关系称霍尔佩琪法则,因变形在晶粒内运动的位错在晶界其运动被阻,所以晶界大量存在的细晶粒材料,其强度很高。前述的固溶强化、析出强化及加工硬化若过分提高强度,则会使韧性受损。所以,有时根据加工、使用条件使强度有一定限制。另一方面,当晶粒细化时不但不损坏韧性,而且还能提高强度。现在,对钢铁材料的晶粒细化的研究非常盛行,并以“超级金属的技术开发。为题

8、进行着开发,通常不锈钢的晶粒直径为数十微米,但在这些课题中正在研究一种制造方法,使金属晶粒有1100到数百毫微米(nm),例如,晶粒直径为300nm的奥氏体系不锈钢其拉伸强度为1100 Nmm2,约是通常粒径材料的2倍。为了能在不损害韧性的前提下得到高强度,对这种方法寄予了很大的希望。在JIS规定的不锈钢中存在具有微细组织的不锈钢,这是把不同组织复合的双相系不锈钢。SUS329J4L(25Cr6Ni3MoN)具有在铁素体母相中分布着岛状奥氏体相的组织,由于为复合组织故各组织很细微。另外,由于加入了氮使之固溶强化提高了强度,耐点蚀性也得到改善。由于晶粒细化和固溶强化的复合作用,使得双相钢的屈服强

9、度等强度特性好于奥氏体系和铁索体系。3.3 固溶强化 纯金属由于强度低, 很少用作结构材料, 在工业上合金的应用远比纯金属广泛。合金组元溶入基体金属的晶格形成的均匀相称为固溶体。纯金属一旦加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。 实验结果表明,在碳含量小于0.4%时,马氏体的屈服强度随碳含量增加而升高;碳含量大于0.4%时,马氏体的屈服强度不

10、再增加。这一现象的普遍解释为,固溶的间隙C 原子处于Fe 原子组成的八面体的中心位置,马氏体中的八面体为扁八面体(奥氏体中为正八面体),C 原子溶入后形成以C 原子为中心的畸变偶极应力场,该应力场与位错产生强烈的交互作用,令位错运动使马氏体强度升高。当含碳量高于0.4%时,C 原子间距太近,产生的畸变偶极应力场彼此抵消,降低了强化效果。3.4 形变强化生产金属材料的主要方法是塑性加工, 即在外力作用下使金属材料发生塑性变形, 使其具有预期的性能、形状和尺寸。在再结晶温度以下进行的塑性变形称为冷变形。金属材料在冷变形过程中强度将逐渐升高, 这一现象称为形变强化。 钢变形时给结晶加上了剪断应力,在

11、位错运动的同时,给结晶导入了大量的位错。加工硬化加工轧制和拔丝这种塑性变形使晶体内的位错密度增加,是强化钢的方法。据重庆304不锈钢卷板研究证明这种加工硬化作用奥氏体系比铁素体系大得多。在18Cr-8Ni组成的亚稳定奥氏体系,因位错密度增大的硬化和马氏体的生成(加工引起相变)容易得到高强度。利用加工硬化的材料称硬化材,其强度可根据轧制率的变化按H(硬级)、34H和12H的强度水平划分,SUS 301(17Cr-TNi)硬化材在家庭电器机械的压簧和汽车的引擎垫圈、通信机械的连接器材等板弹簧制品方面使用非常普及。由加工硬化引起的马氏体具有磁性,所以SUS 301和SUS 304的硬化材也有磁性。非

12、磁性的弹簧用材料有含高锰的不锈钢AISl205(17Cr-15Mn-15Ni-O35N),该钢是用锰取代了SUS 301中的镍,由于其性质的不同,可以固溶更多的氮。就是说,可以得到前述的固溶强化的效果。在固溶化处理状态下SUS 304的硬度约1801tV,而AISl 205的硬度约2701V,再进行加工时可发现显著的加工硬化特性。所有钢种随着压下率增加的同时,硬度也上升。3.5时效强化时效强化也是马氏体强化的一个重要因素,马氏体相变是无扩散相变,但在马氏体形成后,马氏体中的碳原子的偏聚(马氏体自回火)就能发生,碳原子发生偏聚(时效)的结果,碳含量越高,时效强化越显著。时效强化是由C 原子扩散偏

13、聚钉扎位错引起。因此,如果马氏体在室温以上形成,淬火冷却时又未能抑制C 原子的扩散,则在淬火至室温途中C 原子扩散偏聚已自然形成,而呈现时效。所以,对于MS 高于室温的钢,在通常淬火冷却条件下,淬火过程即伴随自回火。3.6 亚结构强化亚结构强化主要指孪晶或层错的强化作用,其表现在以下几个方面:(1)位错与孪晶的弹性交互作用;(2)位错穿过孪晶构成滑移轨迹的曲折;(3)孪晶阻挡位错运动。应当指出,孪晶的强化,据认为是由于碳原子在孪晶界面上的偏聚所造成的,其强化作用的贡献与钢的含碳量关系密切:当碳含量小于0.3%时,马氏体的强化主要寄托于间隙原子的固溶强化;当碳含量为0.3%-0.6%时,马氏体强

14、度的提高除得益于固溶强化外,还可有孪晶和位错亚结构的强化贡献;当碳含量大于0.6%时,孪晶的强化作用显得很弱。结论:马氏体由于其高强度,高硬度在很多领域都有广泛的应用。我们在应用马氏体的同时,要了解马氏体的强化机制,从而通过不同机制对马氏体强度的影响,找到提高马氏体强度的方法。结果表明,马氏体之所以有高硬度,高强度是多种强化机制的综合作用结果。其强化机制包括相变强化、固溶强化、时效强化、形变强化和细晶强化等。各种强化机制相互作用,相互促进。参考文献1. 尹钟大,李晓东.18Ni马氏体时效钢时效机理研究J.金属学报.1995,31(1):8-12.2姜越,尹钟大,朱景川,李明伟. 超高强度马氏体时效钢的发展J.特殊钢,2004,25(2):1-5.3张慧杰,李鸿美. 高强度超低碳马氏体钢的强化机理J.上海金属,2010,32(2):42-45.4. 黎永钧.低碳马氏体的组织结构及强韧化机理D.西安:西安交通大学金属材料及强度研究所.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com