同济大学(高等数学)_第五章_定积分及其应用.docx

上传人:叶*** 文档编号:89008414 上传时间:2023-05-05 格式:DOCX 页数:56 大小:2.02MB
返回 下载 相关 举报
同济大学(高等数学)_第五章_定积分及其应用.docx_第1页
第1页 / 共56页
同济大学(高等数学)_第五章_定积分及其应用.docx_第2页
第2页 / 共56页
点击查看更多>>
资源描述

《同济大学(高等数学)_第五章_定积分及其应用.docx》由会员分享,可在线阅读,更多相关《同济大学(高等数学)_第五章_定积分及其应用.docx(56页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、第五章 定积分及其应用本章开始讨论积分学中的另一个基本问题:定积分.首先我们从几何学与力学问题引进定积分的定义,之后讨论它的性质与计算方法.最后,来讨论定积分的应用问题. 第1节 定积分的概念与性质1.1 定积分问题举例1.1.1 曲边梯形的面积曲边梯形: 设函数在区间上非负、连续. 由直线及曲线所围成的图形称为曲边梯形, 其中曲线弧称为曲边. 求曲边梯形的面积的近似值: 将曲边梯形分割成一些小的曲边梯形,每个小曲边梯形的面积都近似地等于小矩形的面积, 则所有小矩形面积的和就是曲边梯形面积的近似值. 具体方法是: 在区间中任意插入若干个分点(图5-1) 把分成个小区间 它们的长度依次为 经过每

2、一个分点作平行于轴的直线段, 把曲边梯形分成个窄曲边梯形.在每个小区间上任取一点 以为底、为高的窄矩形近似替代第个窄曲边梯形,把这样得到的个窄矩形面积之和作为所求曲边梯形面积的近似值, 即 求曲边梯形的面积的精确值: 显然, 分点越多、每个小曲边梯形越窄, 所求得的曲边梯形面积的近似值就越接近曲边梯形面积的精确值, 因此, 要求曲边梯形面积的精确值, 只需无限地增加分点, 使每个小曲边梯形的宽度趋于零. 记于是, 上述增加分点, 使每个小曲边梯形的宽度趋于零, 相当于令所以曲边梯形的面积为图5-11.1.2 变速直线运动的路程 设物体作直线运动, 已知速度是时间间隔上的连续函数, 且计算在这段

3、时间内物体所经过的路程 . 求近似路程: 我们把时间间隔分成个小的时间间隔 , 在每个小的时间间隔内, 物体运动看成是均速的, 其速度近似为物体在时间间隔内某点的速度, 物体在时间间隔内 运动的路程近似为把物体在每一小的时间间隔内 运动的路程加起来作为物体在时间间隔内所经过的路程的近似值. 具体做法是: 在时间间隔内任意插入若干个分点 分成个小段 各小段时间的长依次为 相应地, 在各段时间内物体经过的路程依次为 在时间间隔上任取一个时刻 以时刻的速度来代替上各个时刻的速度, 得到部分路程的近似值, 即 于是这段部分路程的近似值之和就是所求变速直线运动路程的近似值, 即; 求精确值: 记当时,

4、取上述和式的极限, 即得变速直线运动的路程. 1.2 定积分的概念 抛开上述问题的具体意义, 抓住它们在数量关系上共同的本质与特性加以概括, 就抽象出下述定积分的定义. 定义 设函数在上有界, 在中任意插入若干个分点把区间分成个小区间 各小段区间的长依次为在每个小区间上任取一个点作函数值与小区间长度的乘积并作出和. 记,如果不论对怎样分法, 也不论在小区间上点怎样取法, 只要当时, 和S 总趋于确定的极限I, 这时我们称这个极限I为函数在区间上的定积分, 记作, 即.其中叫做被积函数, 叫做被积表达式, x叫做积分变量, a 叫做积分下限, b 叫做积分上限, 叫做积分区间. 根据定积分的定义

5、, 曲边梯形的面积为. 变速直线运动的路程为. 说明: (1)定积分的值只与被积函数及积分区间有关, 而与积分变量的记法无关, 即. (2)和通常称为f (x)的积分和. (3)如果函数在上的定积分存在, 我们就说在区间上可积. 函数在上满足什么条件时, 在上可积呢? 定理1 设在区间上连续, 则f (x) 在上可积. 定理2 设在区间上有界, 且只有有限个间断点, 则 在上可积. 定积分的几何意义: 设是上的连续函数,由曲线及直线所围成的曲边梯形的面积记为.由定积分的定义易知道定积分有如下几何意义:(1)当时,(2)当时,(3)如果在上有时取正值,有时取负值时,那么以为底边,以曲线为曲边的曲

6、边梯形可分成几个部分,使得每一部分都位于轴的上方或下方.这时定积分在几何上表示上述这些部分曲边梯形面积的代数和,如图5.3所示,有其中分别是图5-2中三部分曲边梯形的面积,它们都是正数.图5-2 例1. 利用定义计算定积分. 解 把区间0, 1分成n等份, 分点和小区间长度分别为(i=1, 2, , n-1), (i=1, 2, , n) . 取作积分和. 因为, 当时, 所以.图5-3 例2 用定积分的几何意义求. 解 函数在区间上的定积分是以为曲边, 以区间为底的曲边梯形的面积. 因为以为曲边, 以区间为底的曲边梯形是一直角三角形, 其底边长及高均为1, 所以.图5-4例3利用定积分的几何

7、意义,证明.证明 令 ,显然,则由和直线,所围成的曲边梯形是单位圆位于轴上方的半圆.如图5-5所示.因为单位圆的面积,所以半圆的面积为.由定积分的几何意义知: .图5-5 1.3 定积分的性质 两点规定: (1)当时, . (2)当时, . 性质1 函数的和(差)的定积分等于它们的定积分的和(差) 即. 证明: . 性质2 被积函数的常数因子可以提到积分号外面 即. 这是因为. 性质3 如果将积分区间分成两部分 则在整个区间上的定积分等于这两部分区间上定积分之和 即 . 这个性质表明定积分对于积分区间具有可加性. 值得注意的是不论的相对位置如何总有等式成立. 例如, 当时, 由于,于是有. 性

8、质4 如果在区间上f (x)1 则 . 性质5 如果在区间上 f (x)0, 则(ab). 推论1 如果在区间上 f (x) g(x) 则(ab). 这是因为g (x)-f (x)0, 从而,所以. 推论2 (ab). 这是因为-|f (x)| f (x) |f (x)|, 所以,即 性质6 设M 及m 分别是函数在区间上的最大值及最小值, 则(a0). 解 令,则,当时, 当时. . 例4 计算. 解:令则当时, 当时. . 或 . 例5 计算. 解 . 提示: . 在上在上 例6 计算. 解 令则, 当时, 当时. . 例7设在区间上连续,证明:(1)如果为奇函数,则;(2)如果为偶函数,

9、则.证明 由定积分的可加性知,对于定积分,作代换,得=,所以 =(1)如果为奇函数,即,则,于是 .(2)如果为偶函数,即,于是 . 例8 若在上连续, 证明 (1); (2). 证明 (1)令, 则 . (2)令 , 则 , 所以. 例9 设函数, 计算. 解 设 , 则当时, 当时.3.2 定积分的分部积分法 设函数在区间上具有连续导数, 由得 , 式两端在区间上积分得, 或.这就是定积分的分部积分公式.分部积分过程: . 例10 计算. 解 . 例11 计算. 解 令, 则 . 例12求.解 =.例13求.解 =. 例14 设, 证明 (1)当n为正偶数时, ; (2)当n为大于1的正奇

10、数时, . 证明 =(n-1)I n- 2-(n-1)I n , 由此得 . , , 而, , 因此 , .3.3 定积分的近似计算虽然牛顿莱布尼兹公式解决了定积分的计算问题,但它的使用是有一定局限 性的。对于被积分中的不能用初等函数表达的情形或其原函数虽能用初等函数表达但很复杂的情形,我们就有必要考虑近似计算的方法。定积分的近似计算的基本思想是根据定积分的几何意义找出求曲边梯形面积的近似方法。下面介绍三种常用的方法:矩形法、梯形法及抛物线法。3.3.1 矩形法用分点将区间等分成份,每一份长度为,取小区间左端点的函数作为窄矩形的高(图5-7),则有取小区间右端点的函数值作为窄矩形的高, 则有以

11、上两公式称为矩形法公式。 图5-73.3.2 梯形法将积分区间作等分,分点依次为相应的函数为 曲线上相应的点为将曲线的每一段弧用过点(线性函数)来代替,这使得每个上的曲边梯形形成了真正的梯形(图5-8),其面积为 于是各个小梯形面积之和就是曲边梯形面积的近似值,即 亦即 (2)称此式为梯形法公式。在实际应用中,我们还需要知道用这个近似值来代替所求积分时所产生的误差,从而有其中图5-83.3.3 抛物线法由梯形法求近似值,当为凹曲线时,它就偏小;当为凸曲线时,它就偏大。如果每段改用与它凸性相接近的抛物线来近似,就可减少上述缺点。下面介绍抛物线法。(图5-9)将区间作等分,分点依次为对应的函数值为

12、 曲线上相应的点为现把区间上的曲线段用通过三点的抛物线来近似代替,然后求函数从到的定积分: 将这个积分相加即得原来所要计算的定积分的近似值: 即 这就是抛物线法公式,也就是辛卜生公式。也有其中 可见越大,近似计算越准确。一般说来,将积分区间作同样数目等份的情况下,抛物线形公式比梯形公式更精确一些。图5-9习题5-31计算下列定积分(1) ; (2) ; (3); (4); (5); (6); (7); (8); (9); (10); (11) ;(12).2.利用换元法计算下列积分(1); (2); (3);(4); (5) ; (6);(7); (8).3.计算下列定积分(1); (2).4

13、.利用分部积分法计算下列积分(1); (2); (3); (4); (5); (6);(7); (8); (9); (10); (11); (12) ; (13); (14).5.利用奇偶性计算下列各式(1); (2) ; (3); (4).6.若是连续的奇函数,证明是偶函数:若是连续的偶函数,证明是奇函数。7.若在区间上连续,证明(1)=;(2)= ,由此计算 .8. 设在上连续,证明 .9.设在上连续,证明:第4节 反常积分4.1 无穷限的反常积分 定义1 设函数在区间上连续, 取 . 如果极限 存在, 则称此极限为函数在无穷区间上的反常积分, 记作, 即. 这时也称反常积分收敛. 如果上

14、述极限不存在, 函数在无穷区间上的反常积分就没有意义, 此时称反常积分发散. 类似地, 设函数在区间上连续, 如果极限(a0)上相应于q从0变到2p 的一段弧与极轴所围成的图形的面积. 解: . 例5. 计算心形线r=a(1+cosq ) (a0) 所围成的图形的面积. 解 . 图5-15例6. 求双纽线所围成的图形的面积. 解 由对称性可知总面积为第一象限面积的四倍(如图5-16),即 图5-165.2.2 体 积1 旋转体的体积 旋转体就是由一个平面图形绕这平面内一条直线旋转一周而成的立体. 这直线叫做旋转轴. 常见的旋转体: 圆柱、圆锥、圆台、球体. 旋转体都可以看作是由连续曲线y=f

15、(x)、直线x=a 、a=b 及x轴所围成的曲边梯形绕x轴旋转一周而成的立体. 设过区间a, b内点x 且垂直于x轴的平面左侧的旋转体的体积为V (x), 当平面左右平移dx后, 体积的增量近似为DV=pf (x)2dx , 于是体积元素为dV = pf (x)2dx , 旋转体的体积为.图5-17 例7 连接坐标原点O及点P(h, r)的直线、直线x=h 及x 轴围成一个直角三角形. 将它绕x轴旋转构成一个底半径为r、高为h的圆锥体. 计算这圆锥体的体积. 解 直角三角形斜边的直线方程为. 所求圆锥体的体积为.图5-18 例8 计算由椭圆所成的图形绕x轴旋转而成的旋转体(旋转椭球体)的体积.

16、 解 这个旋转椭球体也可以看作是由半个椭圆及x轴围成的图形绕x轴旋转而成的立体. 体积元素为dV= p y 2dx ,于是所求旋转椭球体的体积为.例9 计算由星形线绕x轴旋转而成的旋转体的体积. 解 星形线的参数方程为,根据对称性可知,旋转体体积为第一象限图像绕x轴旋转而成的旋转体的体积的2倍图5-192 平行截面面积为已知的立体的体积 设立体在x轴的投影区间为a, b, 过点x 且垂直于x轴的平面与立体相截, 截面面积为A(x), 则体积元素为A(x)dx , 立体的体积为. 例10 一平面经过半径为R的圆柱体的底圆中心, 并与底面交成角a. 计算这平面截圆柱所得立体的体积. 解 取这平面与

17、圆柱体的底面的交线为x轴, 底面上过圆中心、且垂直于x轴的直线为y轴. 那么底圆的方程为x 2 +y 2=R 2. 立体中过点x且垂直于x轴的截面是一个直角三角形. 两个直角边分别为及. 因而截面积为.于是所求的立体体积为. 例11 求以半径为R的圆为底、平行且等于底圆直径的线段为顶、高为h的正劈锥体的体积. 解 取底圆所在的平面为x O y 平面, 圆心为原点, 并使x轴与正劈锥的顶平行. 底圆的方程为x 2 +y 2=R 2. 过x轴上的点x (-Rx0)相应于q 从0到2p 一段的弧长. 解 弧长元素为.于是所求弧长为. 5.3 定积分在经济上的应用在经济分析中,我们可以对经济函数进行边

18、际分析和弹性分析,这用到了导数或微分的知识。而在实际问题中往往还涉及到已知边际函数或弹性函数,来求经济函数(原函数)的问题,这就需要利用定积分或者不定积分来完成。下面通过实例来说明定积分在经济分析方面的应用。5.3.1 利用定积分求原经济函数问题在经济管理中, 由边际函数求总函数( 即原函数) , 一般采用不定积分来解决,或求一个变上限的定积分。可以求总需求函数,总成本函数, 总收入函数以及总利润函数。设经济应用函数的边际函数为 ,则有例16 生产某产品的边际成本函数为, 固定成本C (0) =10000, 求出生产x个产品的总成本函数。解 总成本函数=5.3.2 利用定积分由变化率求总量问题

19、如果求总函数在某个范围的改变量, 则直接采用定积分来解决。例17 已知某产品总产量的变化率为 ( 件/天) , 求从第5 天到第10 天产品的总产量。解 所求的总产量为(件)5.3.3 利用定积分求经济函数的最大值和最小值例18 设生产x 个产品的边际成本C = 100+ 2x , 其固定成本为元,产品单价规定为500元。假设生产出的产品能完全销售,问生产量为多少时利润最大? 并求出最大利润。解 总成本函数为=总收益函数为.总利润函数为.其导数为,令, 得.因为,所以, 生产量为200 单位时, 利润最大。最大利润为 ( 元) 。5.3.4 􀀁利用定积分计算资本现值和投资若有

20、一笔收益流的收入率为f(t) , 假设连续收益流以连续复利率r 计息, 从而总现值y=。例19 现对某企业给予一笔投资A, 经测算,该企业在T 年中可以按每年a 元的均匀收入率获得收入, 若年利润为r, 试求:( 1) 该投资的纯收入贴现值;( 2) 收回该笔投资的时间为多少?解􀀁 ( 1) 求投资纯收入的贴现值: 因收入率为a, 年利润为r, 故投资后的T 年中获总收入的现值为Y= 从而投资所获得的纯收入的贴现值为( 2) 求收回投资的时间: 收回投资, 即为总收入的现值等于投资。由得T =即收回投资的时间为T=例如, 若对某企业投资A = 800( 万元) , 年利率为5

21、% , 设在20 年中的均匀收入率为a= 200( 万元/ 年),则有投资回收期为=( 年)由此可知,该投资在20年内可得纯利润为1728.2万元, 投资回收期约为4.46年.5.4 定积分在物理上的应用 5.4.1 变力沿直线所作的功 例20 电量为+q的点电荷位于r轴的坐标原点O处它所产生的电场力使r轴上的一个单位正电荷从r=a处移动到r=b(ab)处求电场力对单位正电荷所作的功. 提示: 由物理学知道, 在电量为+q的点电荷所产生的电场中, 距离点电荷r处的单位正电荷所受到的电场力的大小为 (k是常数).解 在r轴上, 当单位正电荷从r移动到r+dr时, 电场力对它所作的功近似为, 即功

22、元素为.于是所求的功为. 例21 在底面积为S的圆柱形容器中盛有一定量的气体. 在等温条件下, 由于气体的膨胀, 把容器中的一个活塞(面积为S)从点a处推移到点b处. 计算在移动过程中, 气体压力所作的功. 解 取坐标系如图5-20, 活塞的位置可以用坐标x来表示. 由物理学知道, 一定量的气体在等温条件下, 压强p与体积V的乘积是常数k , 即 pV=k 或. 在点x处, 因为V=xS, 所以作在活塞上的力为. 当活塞从x移动到x+dx时, 变力所作的功近似为,即功元素为. 于是所求的功为. 图5-20 例22 一圆柱形的贮水桶高为5m, 底圆半径为3m, 桶内盛满了水. 试问要把桶内的水全

23、部吸出需作多少功? 解 作x轴如图5-21. 取深度x 为积分变量. 它的变化区间为0, 5, 相应于0, 5上任小区间x, x+dx的一薄层水的高度为dx. 水的比重为9.8kN/m3, 因此如x的单位为m, 这薄层水的重力为9.8p32dx. 这薄层水吸出桶外需作的功近似地为dW=88.2pxdx, 此即功元素. 于是所求的功为(kj). 图5-21 5.4.2 水压力 从物理学知道, 在水深为h处的压强为p=gh , 这里 g 是水的比重. 如果有一面积为A 的平板水平地放置在水深为h处, 那么, 平板一侧所受的水压力为P=pA. 如果这个平板铅直放置在水中, 那么, 由于水深不同的点处压强p不相等, 所以平板所受水的压力就不能用上述方法计算. 例23一个横放着的圆柱形水桶, 桶内盛有半桶水. 设桶的底半径为R, 水的比重为 g , 计算桶的一个端面上所受的压力. 解 桶的一个端面是圆片, 与水接触的是下半圆. 取坐标系如图5-22. 在水深x处于圆片上取一窄条, 其宽为dx , 得压力元素为

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com