数学分支巡礼.pdf

上传人:文*** 文档编号:88939597 上传时间:2023-05-04 格式:PDF 页数:64 大小:10.73MB
返回 下载 相关 举报
数学分支巡礼.pdf_第1页
第1页 / 共64页
数学分支巡礼.pdf_第2页
第2页 / 共64页
点击查看更多>>
资源描述

《数学分支巡礼.pdf》由会员分享,可在线阅读,更多相关《数学分支巡礼.pdf(64页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、数学分支巡礼最 早 的 数 学 一 算 术算术是数学中最古老、最基础和最初等的部分。它研究数的性质及其运算。“算术”这个词,在我国古代是全部数学的统称。至于几何、代数等许多数学分支学科的名称,都是后来很晚的时候才有的。国外系统地整理前人数学知识的书,要算是希腊的欧几里得的 几何原本最早。几何原本全书共十五卷,后两卷是后人增补的。全书大部分是属于几何知识,在第七、八、九卷中专门讨论了数的性质和运算,属于算术的内容。现在拉丁文的“算术”这个词是由希腊文的“数和数(音属,Shu三音)数的技术”变化而来的。“算”字在中国的古意也是“数”的意思,表示计算用的竹筹。中国古代的复杂数字计算都要用算筹。所以“

2、算术”包含当时的全部数学知识与计算技能,流传下来的最古老的 九章算术以及失传的许商 算术和 杜 忠 算术,就是讨论各种实际的数学问题的求解方法。关于算数的产生,还是要从数谈起。数是用来表达、讨论数量问题的,有不同类型的量,也就随着产生了各种不同类型的数。远在古代发展的最初阶段,由于人类日常生活与生产实践中的需要,在文化发展的最初阶段就产生了最简单的自然数的概念。自然数的一个特点就是由不可分割的个体组成。比如说树和羊这两种事物,如果说两棵树,就是一棵再一颗;如果有三只羊,就是一只、一只又一只。但不能说有半棵树或者半只羊,半棵树或者半只羊充其量只能算是木材或者是羊肉,而不能算作树和羊。不过,自然数

3、不足以解决生活和生产中常见的分份问题,因此数的概念产生了第一次扩张。分数是对另一种类型的量的分割而产生的。比如,长度就是一种可以无限地分割的量,要表示这些量,就只有用分数。从已有的文献可知,人类认识自然数和分数的历史是很久的。比如约公元前2000年流传下来的古埃及莱茵德纸草书,就记载有关于分数的计算方法;中国殷代遗留下来的甲骨文中也有很多自然数,最大的数字是三万,并且全部是应用十进位制的位置计数法。自然数和分数具有不同的性质,数和数之间也有不同的关系,为了计算这些数,就产生了加、减、乘、除的方法,这四种方法就是四则运算。把数和数的性质、数和数之间的四则运算在应用过程中的经验累积起来,并加以整理

4、,就形成了最古老的一门数学算术。在算术的发展过程中,由于实践和理论上的要求,提出了许多新问题,在解决这些新问题的过程中,古算术从两个方面得到了进一步的发展。一方面在研究自然数四则运算中,发现只有除法比较复杂,有的能除尽,有的除不尽,有的数可以分解,有的数不能分解,有些数又大 于 1 的公约数,有些数没有大于1 的公约数。为了寻求这些数的规律,从而发展成为专门研究数的性质、脱离了古算术而独立的一个数学分支,叫做整数论,或叫做初等数论,并在以后又有新的发展。另一方面,在古算术中讨论各种类型的应用问题,以及对这些问题的各种解法。在长期的研究中,很自然地就会启发人们寻求解这些应用问题的一般方法。也就是

5、说,能不能找到一般的更为普遍适用的方法来解决同样类型的应用问题,于是发明了抽象的数学符号,从而发展成为数学的另一个古老的分支,指就是初等代数。数学发展到现在,算术已不再是数学的一个分支,现在我们通常提到的算术,只是作为小学里的一个教学科目,目的是使学生理解和掌握有关数量关系和空间形式的最基础的知识,能够正确、迅速地进行整数、小数、分数的四则运算,初步了解现代数学中的一些最简单的思想,具有初步的逻辑思维能力和空间观念。现代小学数学的具体内容,基本上还是古代算术的知识,也就是说,古代算术和现代算术的许多内容上是相同的。不过现代算术和古代算术也还存在着区别。首先,算术的内容是古代的成人包括数学家所研

6、究的对象,现在这些内容已变成了少年儿童的数学。其次,在现代小学数学里,总结了长期以来所归结出来的基本运算性质,就是加法、乘法的交换律和结合律,以及乘法对加法的分配律,这五条基本运算定律,不仅是小学数学里所学习的数运算的重要性质,也是整个数学里,特别是代数学里着重研究的主要性质。第三,在现代的小学数学里,还孕育着近代数学里的集合和函数等数学基础概念的思想。比如,和、差、积、商的变化,数和数之间的对应关系,以及比和比例等。另外,现在小学数学里,还包含有十六世纪才出现的十进小数和它们的四则运算。应当提出的是十进小数不是一种新的数,而可以被看作是一种分母是10的方塞的分数的另一种写法。我们在这里把算术

7、列成第一个分支,主要是想强调在古代全部数学就叫做算术,现代的代数学、数论等最初就是由算术发展起来的。后来,算学、数学的概念出现了,它代替了算术的含义,包括了全部数学,算术就变成了一个分支了。因此,也可以说算术是最古老的分支。高等代数初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数在讨论任意多个未知数的一次方程组,也叫线型方程组的同时还研究次数更高的一元方程组。发展到这个阶段,就叫做高等代数。高等代数是代数学发展到高级阶段的总称,它包括许多分支。现在大学里开设的高等代数,一般包括两部分:线性代数初

8、步、多项式代数。高等代数在初等代数的基础上研究对象进一步的扩充,引进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。集合是具有某种属性的事物的全体;向量是除了具有数值还同时具有方向的量;向量空间也叫线性空间,是由许多向量组成的并且符合某些特定运算的规则的集合。向量空间中的运算对象已经不只是数,而是向量了,其运算性质也由很大的不同了。高等代数发展简史代数学的历史告诉我们,在研究高次方程的求解问题上,许多数学家走过了一段颇不平坦的路途,付出了艰辛的劳动。人们很早就已经知道了一元一次和一元二次方程的求

9、解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的 缉古算经就有叙述。到了十三世纪,宋代数学家秦九韶再他所著的 数书九章这部书的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候以得到了高次方程的一般解法。在西方,直到十六世纪初的文艺复兴时期,才由有意大利的数学家发现一元三次方程解的公式卡当公式。在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(15011576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔

10、塔里亚公式。三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(15221560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。到了十九世纪初,挪威的一位青年数学家阿贝尔(18021829)证明了五次或五次以上的方程不可能有代数解。既这些方程的根不能用方程的系数通过加、减、乘、除、乘方、开方这些代数运算表示出来。阿贝尔的这个证明不但比较难,而且也没有回答每一个具体的方程是否可以用代数方法求解的问题。后来,五次或五次以上的方程不可能有代数解的问题,由法国的一位青年数学家伽罗

11、华彻底解决了。伽罗华20岁的时候,因为积极参加法国资产阶级革命运动,曾两次被捕入狱,1832年4月,他出狱不久,便在一次私人决斗中死去,年仅21岁。伽罗华在临死前预料自己难以摆脱死亡的命运,所以曾连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的。公开请求雅可比或高斯,不是对这些定理的正确性而是对这些定理的重要性发表意见。我希望将来有人发现消除所有这些混乱对它们是有益的。”伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在 百科评论中。他的论文手稿过了 14年,才由刘维尔(18

12、091882)编辑出版了他的部分文章,并向数学界推荐。随着时间的推移,伽罗华的研究成果的重要意义愈来愈为人们所认识。伽罗华虽然十分年轻,但是他在数学史上做出的贡献,不仅是解决了几个世纪以来一直没有解决的高次方程的代数解的问题,更重要的是他在解决这个问题中提出了“群”的概念,并由此发展了一整套关于群和域的理论,开辟了代数学的一个崭新的天地,直接影响了代数学研究方法的变革。从此,代数学不再以方程理论为中心内容,而转向对代数结构性质的研究,促进了代数学的进一步的发展。在数学大师们的经典著作中,伽罗华的论文是最薄的,但他的数学思想却是光辉夺目的。高等代数的基本内容代数学从高等代数总的问题出发,又发展成

13、为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等。多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上

14、和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解。我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。生活中的几何一欧式几何几何学发展简况“几何”这个词在汉语里是“多少?”的意思,但在数学里“几何”的涵义就完全不同了。“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术。几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步

15、认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的儿何知识之上的。儿何学史数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是儿何学的重要发源地。大量出土文物证明,在我国的史前时期,人们已经掌握了许多儿何的基本知识,看一看远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些简单设计但是讲究体积和容积比例的器皿,都足以说明当时

16、人们掌握的儿何知识是多么丰富了。儿何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究儿何就是最感兴趣的内容,在这里应当提及的是哲学家、儿何学家柏拉图和哲学家亚里士多德对发展儿何学的贡献。柏拉图把逻辑学的思想方法引入了儿何,使原始的儿何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授儿何学,已经运用逻辑推理的方法对儿何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等儿何学中,仍是运用三段论

17、的形式来进行推理。但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把儿何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。欧儿里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些儿何原理。他非常详尽的搜集了当时所能知道的一切儿何事实,按照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著 儿何原本。儿何原本的伟大历史意义在于它是用公理法建立起演绎的数学体系的最早典范。在这部著作里,全部儿何知识都是从最初的儿个假设除法、运用逻辑推理的方

18、法展开和叙述的。也就是说,从 儿何原本发表开始,儿何才真正成为了一个有着比较严密的理论系统和科学方法的学科。欧儿里得的 儿何原本欧儿里得的 儿何原本共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在 几何原本 里了。因此长期以来,人们都认为 几何原本 是两千多年来传播儿何知识的标准教

19、科书。属 于 儿何原本内容的儿何学,人们把它叫做欧儿里得儿何学,或简称为欧式儿何。儿何原本最主要的特色是建立了比较严格的儿何体系,在这个体系中有四方面主要内容,定义、公理、公设、命 题(包括作图和定理)。几何原本第一卷列有23个定义,5条公理,5条公设。(其中最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了儿何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧儿何。)这些定义、公理、公 设 就 是 儿何原本全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑

20、推理给予仔细证明。关于儿何论证的方法,欧儿里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。欧儿里得 儿何原本的诞生在儿何学发展的历史中具有重要意义。它标志着儿何学已成为一个有着比较严密的理论系统和科学方法的学科。从欧儿里得发表 儿何原本到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧儿里得儿何学仍旧是中学生学

21、习数学基础知识的好教材。由于欧氏儿何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习儿何中得到益处,从而作出了伟大的贡献。少年时代的牛顿在剑桥大学附近的夜店里买了一本 几何原本,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标儿何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的儿何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把 儿何原本从头到尾地反

22、复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“儿何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,儿何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数儿个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理:相对原理和光速不变原理。在儿何学发展的历史中,欧儿里得的 儿何原本起了重大的历史作用。这种作用归结到一点,就是提出了儿何学的“

23、根据”和它的逻辑结构的问题。在他写的 儿何原本中,就是用逻辑的链子由此及彼的展开全部儿何学,这项工作,前人未曾作到。但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧儿里得在 儿何原本中提出儿何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧儿里得在逻辑推理中使用了“连续”的概念,但是在 儿何原本中从未提到过这个概念。现代几何公理体系人 们 对 几何原本中在逻辑结果方面存在的一些漏洞、破绽的发现,正是推动几何学不断

24、向前发展的契机。最后德国数学家希尔伯特在总结前人工作的基础上,在 他1899年 发 表 的 儿何基础一书中提出了一个比较完善的儿何学的公理体系。这个公理体系就被叫做希尔伯特公理体。希尔伯特不仅提出了一个完善的儿何体系,并且还提出了建立一个公理系统的原则。就是在一个儿何公理系统中,采取哪些公理,应该包含多少条公理,应当考虑如下三个方面的问题:第一,共存性(和谐性),就是在一个公理系统中,各条公理应该是不矛盾的,它们和谐而共存在同一系统中。第二,独立性,公理体系中的每条公理应该是各自独立而互不依附的,没有一条公理是可以从其它公理引伸出来的。第三,完备性,公理体系中所包含的公理应该是足够能证明本学科

25、的任何新命题。这种用公理系统来定义几何学中的基本对象和它的关系的研究方法,成了数学中所谓的“公理化方法”,而把欧几里得在 几何原本提出的体系叫做古典公理法。公理化的方法给几何学的研究带来了一个新颖的观点,在公理法理论中,由于基本对象不予定义,因此就不必探究对象的直观形象是什么,只专门研究抽象的对象之间的关系、性质。从公理法的角度看,我们可以任意地用点、线、面代表具体的事物,只要这些具体事物之间满足公理中的结合关系、顺序关系、合同关系等,使这些关系满足公理系统中所规定的要求,这就构成了儿何学。因此,凡是符合公理系统的元素都能构成儿何学,每一个儿何学的直观形象不止只有一个,而是可能有无穷多个,每一

26、种直观形象我们把它叫做儿何学的解释,或者叫做某种儿何学的模型。平常我们所熟悉的儿何图形,在研究儿何学的时候,并不是必须的,它不过是一种直观形象而已。就此,儿何学研究的对象更加广泛了,儿何学的含义比欧儿里得时代更为抽象。这些,都对近代儿何学的发展带来了深远的影响。坐标法解析几何解析几何的产生十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应

27、了,这就导致了解析几何的出现。1637年,法国的哲学家和数学家笛卡尔发表了他的著作 方法论,这本书的后面有三篇附录,一 篇 叫 折光学,一 篇 叫 流星学,一 篇 叫 儿何学。当时的这个“儿何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。笛 卡 尔 的 儿何学共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的 儿何学作为解析儿何的起点。从笛卡尔的 儿何学中可以看出,笛卡尔的中心思想是建立起一 种“普遍”的数学,把算术、代数、儿何统一起来。他设想,把任何数学问题化为一

28、个代数问题,在把任何代数问题归结到去解一个方程式。为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。解析儿何的产生并不是偶然的。在笛卡

29、尔写 儿何学以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析儿何的创建产生了很大的影响。在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析儿何的创建者之一,应该分享这门学科创建的荣誉。费尔马是一个业余从事数学研究的学者,对数论、解析儿何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表 儿何学以前,就已写了关于解析儿何的小文,就已经有了解析儿何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公

30、开发表。笛卡尔的 儿何学,作为一本解析儿何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。解析几何的基本内容在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起-对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。坐标系将儿何对象和数、儿何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究儿何学,通常就叫做解析法。这种解析

31、法不但对于解析儿何是重要的,就是对于几何学的各个分支的研究也是十分重要的。解析儿何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析儿何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,”解析儿何的应用解析几何又分作平面解析几何和空间解析几何。在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面

32、、锥面、旋转曲面。椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。总的来说,解析儿何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的儿何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用儿何语言叙述,从而得到原先几何问题的答案。坐标法的思想

33、促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。微分几何微分几何学是运用数学分析的理论研究曲线或曲面在它一点邻域的性质,换句话说,微分几何是研究一般的曲线和曲面在“小范围”上的性质的数学分支学科。微分儿何的产生微分儿何学的产生和发展是和数学分析密切相连的。在这方面第一个做出贡献的是瑞士数学家欧拉。1736年他首先引进了平面曲线的内在坐标这一概念,即以曲线弧长这以儿何量作为曲线上点的坐标,从而开始了曲线的内在儿何的研究。十八世纪初,法国数学家蒙日首先把微积分应用到曲线和曲面的研究中去,并 于18

34、07年出版了它的 分析在儿何学上的应用一书,这是微分儿何最早的一本著作。在这些研究中,可以看到力学、物理学与工业的日益增长的要求是促进微分儿何发展的因素。1827年,高斯发表了 关于曲面的一般研究的著作,这在微分儿何的历史上有重大的意义,它的理论奠定了现代形式曲面论的基础。微分儿何发展经历了 150年之后,高斯抓住了微分儿何中最重要的概念和带根本性的内容,建立了曲面的内在儿何学,其主要思想是强调了曲面上只依赖于第一基本形式的一些性质,例如曲面上曲面的长度、两条曲线的夹角、曲面上的一区域的面积、测地线、测地线曲率和总曲率等等。他的理论奠定了近代形式曲面论的基础。1872年克莱因在德国埃尔朗根大学

35、作就职演讲时,阐述了 埃尔朗根纲领,用变换群对已有的儿何学进行了分类。在 埃尔朗根纲领发表后的半个世纪内,它成了儿何学的指导原理,推动了儿何学的发展,导致了射影微分儿何、仿射微分儿何、共形微分儿何的建立。特别是射影微分儿何起始于1878年阿尔方的学位论文,后 来1906年起经以威尔辛斯基为代表的美国学派所发展,1916年起又经以富比尼为首的意大利学派所发展。随后,由于黎曼儿何的发展和爱因斯坦广义相对论的建立,微分儿何在黎曼几何学和广义相对论中的得到了广泛的应用,逐渐在数学中成为独具特色、应用广泛的独立学科。微分儿何学的基本内容微分儿何学以光滑曲线(曲面)作为研究对象,所以整个微分儿何学是由曲线

36、的弧线长、曲线上一点的切线等概念展开的。既然微分儿何是研究一般曲线和一般曲面的有关性质,则平面曲线在一点的曲率和空间的曲线在一点的曲率等,就是微分儿何中重要的讨论内容,而要计算曲线或曲面上每一点的曲率就要用到微分的方法。在曲面上有两条重要概念,就是曲面上的距离和角。比如,在曲面上由一点到另一点的路径是无数的,但这两点间最短的路径只有一条,叫做从一点到另一点的测地线。在微分儿何里,要讨论怎样判定曲面上一条曲线是这个曲面的一条测地线,还要讨论测地线的性质等。另外,讨论曲面在每一点的曲率也是微分几何的重要内容。在微分几何中,为了讨论任意曲线上每一点邻域的性质,常常用所 谓“活动标形的方法”。对任意曲

37、线的“小范围”性质的研究,还可以用拓扑变换把这条曲线“转化”成初等曲线进行研究。在微分几何中,由于运用数学分析的理论,就可以在无限小的范围内略去高阶无穷小,一些复杂的依赖关系可以变成线性的,不均匀的过程也可以变成均匀的,这些都是微分几何特有的研究方法。近代由于对高维空间的微分儿何和对曲线、曲面整体性质的研究,使微分儿何学同黎曼儿何、拓扑学、变分学、李群代数等有了密切的关系,这些数学部门和微分儿何互相渗透,已成为现代数学的中心问题之一。微分儿何在力学和一些工程技术问题方面有广泛的应用,比如,在弹性薄壳结构方面,在机械的齿轮啮合理论应用方面,都充分应用了微分儿何学的理论。代数几何学几何空间空间的概

38、念复我们来说是熟悉的。我们生活的空间是包含在上下、前后、左右之中的。如果需要描述我们所处的空间中的某一位置,就需要用三个方向来表示,这个意思也就是说空间是“三维”的。在数学中经常用到“空间”这个概念,它指的范围很广,一般指某种对象(现象、状况、图形、函数等)的任意集合,只要其中说明了 “距离”或“邻域”的概念就可以了。而 所 谓“维”的概念,如果我们所谈到的只是简单的几何图形,如点、线、三角形和多边形,那么理解维的概念并不困难:点的维数是零;一条线段的维数是一;一个三角形的维数是二;一个立方体内所有点的集合的是三维的。如果把维度的概念扩充到任意点集合上去的时候,维的概念就不那么容易理解了。比如

39、,什么是四维空间呢?关于四维空间,我国古代有一些说法是很有意思的。最典型的就是对于“宇宙”两字的解释,古人的说法是“四方上下日宇,古往今来曰宙”,用现在的话说就是,四维空间是在三维空间的基础上再加上时间维作为并列的第四个坐标。爱因斯坦认为每一瞬间三维空间中的所有实物在占有一定的位置就是四维的。比如我们所住的房子,就是由长度、宽度、高度、和时间制约的。所谓时间制约就是从盖房的时候算起,直到最后房子倒塌为止。根据上边的说法,儿何学和其它科学研究的n维空间的概念,就可以理解成由空间的点的n个坐标决定。这个空间的图形就定义成满足这个或那个条件的点的轨迹。一般来说,某个图形由n个条件给出,那么这个图形就

40、是某个n维的点。至于这个图形到底是什么形象,我们是否能想象得出来,对数学来说是无关紧要的。儿何学中的“维”的概念,实际上就是构成空间的基本元素,也就是点的活动的自由度,或者说是点的坐标。所 谓n维空间,经常是用来表示超出通常的几何直观范围的数学概念的一种几何语言。从上面的介绍可以看出,几何中的元素可用代数中的是数来表示,代数问题如果通过几何的语言给与直观的描述,有时候可以给代数问题提示适当的解法。比如解三元一次方程组,就可以认为是求解三个平面的交点问题。代数儿何学的内容用代数的方法研究儿何的思想,在继出现解析儿何之后,又发展为儿何学的另一个分支,这就是代数儿何。代数儿何学研究的对象是平面的代数

41、曲线、空间的代数曲线和代数曲面。代数几何学的兴起,主要是源于求解一般的多项式方程组,开展了由这种方程组的解答所构成的空间,也就是所谓代数簇的研究。解析儿何学的出发点是引进了坐标系来表示点的位置,同样,对于任何一种代数簇也可以引进坐标,因此,坐标法就成为研究代数几何学的一个有力的工具。代数几何的研究是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的。例如,阿贝尔在关于椭圆积分的研究中,发现了椭圆函数的双周期性,从而奠定了椭圆曲线理论基础。黎 曼 1857年引入并发展了代数函数论,从而使代数曲线的研究获得了一个关键性的突破。黎曼把他的函数定义在复数平面的某种多层复迭平面上,从而引入了所谓黎曼

42、曲面的概念。运用这个概念,黎曼定义了代数曲线的一个最重要的数值不变量:亏格。这也是代数几何历史上出现的第一个绝对不变量。在黎曼之后,德国数学家诺特等人用儿何方法获得了代数曲线的许多深刻的性质。诺特还对代数曲面的性质进行了研究。他的成果给以后意大利学派的工作建立了基础。从19世纪末开始,出现了以卡斯特尔诺沃、恩里奎斯和塞维里为代表的意大利学派以及以庞加莱、皮卡和莱夫谢茨为代表的法国学派。他们对复数域上的低维代数簇的分类作了许多非常重要的工作,特别是建立了被认为是代数儿何中最漂亮的理论之一的代数曲面分类理论。但是由于早期的代数儿何研究缺乏一个严格的理论基础,这些工作中存在不少漏洞和错误,其中个别漏

43、洞直到目前还没有得到弥补。20世纪以来代数儿何最重要的进展之一是它在最一般情形下的理论基础的建立。20世 纪30年代,扎里斯基和范?德?瓦尔登等首先在代数儿何研究中引进了交换代数的方法。在此基础上,韦伊在40年代利用抽象代数的方法建立了抽象域上的代数儿何理论,然后20世纪50年代中期,法国数学家塞尔把代数簇的理论建立在层的概念上,并建立了凝聚层的上同调理论,这个为格罗腾迪克随后建立概型理论奠定了基础。概型理论的建立使代数儿何的研究进入了一个全新的阶段。代数儿何学中要证明的定理多半是纯儿何的,在论证中虽然使用坐标法,但是采用坐标法多建立在射影坐标系的基础上。在解析儿何中,主要是研究一次曲线和曲面

44、、二次曲线和曲面。而在代数儿何中主要是研究三次、四次的曲线和曲面以及它们的分类,继而过渡到研究任意的代数流形。代数儿何与数学的许多分支学科有着广泛的联系,如数论、解析儿何、微分儿何、交换代数、代数群、拓扑学等。代数儿何的发展和这些学科的发展起着相互促进的作用。同时,作为一门理论学科,代数儿何的应用前景也开始受到人们的注意,其中的一个显著的例子是代数儿何在控制论中的应用。近年来,人们在现代粒子物理的最新的超弦理论中已广泛应用代数儿何工具,这预示着抽象的代数儿何学将对现代物理学的发展发挥重要的作用。微积分学微积分学是微分学和积分学的总称。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着

45、。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏儿何后,全部数学中的最大的一个创造。微积分学的建立从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的 庄子

46、一 书 的“天下篇”中,记 有“一尺之槐,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可.割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。十七世纪的许多著名的数学家、天文学家、物

47、理学家都为解决上述儿类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研

48、究微积分着重于从运动学来考虑,莱布尼茨却是侧重于儿何学来考虑的。牛顿在1671年 写 了 流数法和无穷级数,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名 字 一种求极大极小和切线的新方法,它也适用于分式和无理量

49、,以及这种新方法的奇妙类型的计算。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或儿个人总结完成的。微积分也是这

50、样。不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。应该指出,这是和历史上任何一项重大理论的

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com