内存知识全集---教材.讲义.doc

上传人:教**** 文档编号:86262134 上传时间:2023-04-14 格式:DOC 页数:80 大小:151.50KB
返回 下载 相关 举报
内存知识全集---教材.讲义.doc_第1页
第1页 / 共80页
内存知识全集---教材.讲义.doc_第2页
第2页 / 共80页
点击查看更多>>
资源描述

《内存知识全集---教材.讲义.doc》由会员分享,可在线阅读,更多相关《内存知识全集---教材.讲义.doc(80页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、内存知识大全DDR2 DDR2的定义: DDR2(Double Data Rate 2) SDRAM是由JEDEC(电子设备工程联合委员会)进行开发的新生代内存技术标准,它与上一代DDR内存技术标准最大的不同就是,虽然同是采用了在时钟的上升/下降延同时进行数据传输的基本方式,但DDR2内存却拥有两倍于上一代DDR内存预读取能力(即:4bit数据读预取)。换句话说,DDR2内存每个时钟能够以4倍外部总线的速度读/写数据,并且能够以内部控制总线4倍的速度运行。 此外,由于DDR2标准规定所有DDR2内存均采用FBGA封装形式,而不同于目前广泛应用的TSOP/TSOP-II封装形式,FBGA封装可以

2、提供了更为良好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了坚实的基础。回想起DDR的发展历程,从第一代应用到个人电脑的DDR200经过DDR266、DDR333到今天的双通道DDR400技术,第一代DDR的发展也走到了技术的极限,已经很难通过常规办法提高内存的工作速度;随着Intel最新处理器技术的发展,前端总线对内存带宽的要求是越来越高,拥有更高更稳定运行频率的DDR2内存将是大势所趋。 DDR2与DDR的区别: 在了解DDR2内存诸多新技术前,先让我们看一组DDR和DDR2技术对比的数据。 1、延迟问题: 从上表可以看出,在同等核心频率下,DDR2的实际工作频率是DD

3、R的两倍。这得益于DDR2内存拥有两倍于标准DDR内存的4BIT预读取能力。换句话说,虽然DDR2和DDR一样,都采用了在时钟的上升延和下降延同时进行数据传输的基本方式,但DDR2拥有两倍于DDR的预读取系统命令数据的能力。也就是说,在同样100MHz的工作频率下,DDR的实际频率为200MHz,而DDR2则可以达到400MHz。 这样也就出现了另一个问题:在同等工作频率的DDR和DDR2内存中,后者的内存延时要慢于前者。举例来说,DDR200和DDR2-400具有相同的延迟,而后者具有高一倍的带宽。实际上,DDR2-400和DDR400具有相同的带宽,它们都是3.2GB/s,但是DDR400

4、的核心工作频率是200MHz,而DDR2-400的核心工作频率是100MHz,也就是说DDR2-400的延迟要高于DDR400。2、封装和发热量: DDR2内存技术最大的突破点其实不在于用户们所认为的两倍于DDR的传输能力,而是在采用更低发热量、更低功耗的情况下,DDR2可以获得更快的频率提升,突破标准DDR的400MHZ限制。DDR内存通常采用TSOP芯片封装形式,这种封装形式可以很好的工作在200MHz上,当频率更高时,它过长的管脚就会产生很高的阻抗和寄生电容,这会影响它的稳定性和频率提升的难度。这也就是DDR的核心频率很难突破275MHZ的原因。而DDR2内存均采用FBGA封装形式。不同

5、于目前广泛应用的TSOP封装形式,FBGA封装提供了更好的电气性能与散热性,为DDR2内存的稳定工作与未来频率的发展提供了良好的保障。 DDR2内存采用1.8V电压,相对于DDR标准的2.5V,降低了不少,从而提供了明显的更小的功耗与更小的发热量,这一点的变化是意义重大的。 DDR2采用的新技术: 除了以上所说的区别外,DDR2还引入了三项新的技术,它们是OCD、ODT和Post CAS。 OCD(Off-Chip Driver):也就是所谓的离线驱动调整,DDR II通过OCD可以提高信号的完整性。DDR II通过调整上拉(pull-up)/下拉(pull-down)的电阻值使两者电压相等。

6、使用OCD通过减少DQ-DQS的倾斜来提高信号的完整性;通过控制电压来提高信号品质。 ODT:ODT是内建核心的终结电阻器。我们知道使用DDR SDRAM的主板上面为了防止数据线终端反射信号需要大量的终结电阻。它大大增加了主板的制造成本。实际上,不同的内存模组对终结电路的要求是不一样的,终结电阻的大小决定了数据线的信号比和反射率,终结电阻小则数据线信号反射低但是信噪比也较低;终结电阻高,则数据线的信噪比高,但是信号反射也会增加。因此主板上的终结电阻并不能非常好的匹配内存模组,还会在一定程度上影响信号品质。DDR2可以根据自已的特点内建合适的终结电阻,这样可以保证最佳的信号波形。使用DDR2不但

7、可以降低主板成本,还得到了最佳的信号品质,这是DDR不能比拟的。 Post CAS:它是为了提高DDR II内存的利用效率而设定的。在Post CAS操作中,CAS信号(读写/命令)能够被插到RAS信号后面的一个时钟周期,CAS命令可以在附加延迟(Additive Latency)后面保持有效。原来的tRCD(RAS到CAS和延迟)被AL(Additive Latency)所取代,AL可以在0,1,2,3,4中进行设置。由于CAS信号放在了RAS信号后面一个时钟周期,因此ACT和CAS信号永远也不会产生碰撞冲突。 总的来说,DDR2采用了诸多的新技术,改善了DDR的诸多不足,虽然它目前有成本高

8、、延迟慢能诸多不足,但相信随着技术的不断提高和完善,这些问题终将得到解决 接口类型 接口类型是根据内存条金手指上导电触片的数量来划分的,金手指上的导电触片也习惯称为针脚数(Pin)。因为不同的内存采用的接口类型各不相同,而每种接口类型所采用的针脚数各不相同。笔记本内存一般采用144Pin、200Pin接口;台式机内存则基本使用168Pin和184Pin接口。对应于内存所采用的不同的针脚数,内存插槽类型也各不相同。目前台式机系统主要有SIMM、DIMM和RIMM三种类型的内存插槽,而笔记本内存插槽则是在SIMM和DIMM插槽基础上发展而来,基本原理并没有变化,只是在针脚数上略有改变。 金手指 金

9、手指(connecting finger)是内存条上与内存插槽之间的连接部件,所有的信号都是通过金手指进行传送的。金手指由众多金黄色的导电触片组成,因其表面镀金而且导电触片排列如手指状,所以称为“金手指”。金手指实际上是在覆铜板上通过特殊工艺再覆上一层金,因为金的抗氧化性极强,而且传导性也很强。不过因为金昂贵的价格,目前较多的内存都采用镀锡来代替,从上个世纪90年代开始锡材料就开始普及,目前主板、内存和显卡等设备的“金手指”几乎都是采用的锡材料,只有部分高性能服务器/工作站的配件接触点才会继续采用镀金的做法,价格自然不菲。 内存金手指 内存处理单元的所有数据流、电子流正是通过金手指与内存插槽的

10、接触与PC系统进行交换,是内存的输出输入端口,因此其制作工艺对于内存连接显得相当重要。 内存插槽 最初的计算机系统通过单独的芯片安装内存,那时内存芯片都采用DIP(Dual ln-line Package,双列直插式封装)封装,DIP芯片是通过安装在插在总线插槽里的内存卡与系统连接,此时还没有正式的内存插槽。DIP芯片有个最大的问题就在于安装起来很麻烦,而且随着时间的增加,由于系统温度的反复变化,它会逐渐从插槽里偏移出来。随着每日频繁的计算机启动和关闭,芯片不断被加热和冷却,慢慢地芯片会偏离出插槽。最终导致接触不好,产生内存错误。 早期还有另外一种方法是把内存芯片直接焊接在主板或扩展卡里,这样

11、有效避免了DIP芯片偏离的问题,但无法再对内存容量进行扩展,而且如果一个芯片发生损坏,整个系统都将不能使用,只能重新焊接一个芯片或更换包含坏芯片的主板,此种方法付出的代价较大,也极为不方便。 对于内存存储器,大多数现代的系统都已采用单内联内存模块(Single Inline Memory Module,SIMM)或双内联内存模块(Dual Inline Memory,DIMM)来替代单个内存芯片。这些小板卡插入到主板或内存卡上的特殊连接器里。 DIMM与SIMM相当类似,不同的只是DIMM的金手指两端不像SIMM那样是互通的,它们各自独立传输信号,因此可以满足更多数据信号的传送需要。同样采用D

12、IMM,SDRAM 的接口与DDR内存的接口也略有不同,SDRAM DIMM为168PinDIMM结构,金手指每面为84Pin,金手指上有两个卡口,用来避免插入插槽时,错误将内存反向插入而导致烧毁;DDRDIMM则采用184Pin DIMM结构,金手指每面有92Pin,金手指上只有一个卡口。卡口数量的不同,是二者最为明显的区别。DDR2 DIMM为240pin DIMM结构,金手指每面有120Pin,与DDR DIMM一样金手指上也只有一个卡口,但是卡口的位置与DDR DIMM稍微有一些不同,因此DDR内存是插不进DDR2 DIMM的,同理DDR2内存也是插不进DDRDIMM的,因此在一些同时

13、具有DDR DIMM和DDR2 DIMM的主板上,不会出现将内存插错插槽的问题。 不同针脚DIMM接口对比 为了满足笔记本电脑对内存尺寸的要求,SO-DIMM(Small Outline DIMM Module)也开发了出来,它的尺寸比标准的DIMM要小很多,而且引脚数也不相同。同样SO-DIMM也根据SDRAM和DDR内存规格不同而不同,SDRAM的SO-DIMM只有144pin引脚,而DDR的SO-DIMM拥有200pin引脚。此外笔记本内存还有MicroDIMM和Mini Registered DIMM两种接口。MicroDIMM接口的DDR为172pin,DDR2为214pin;Min

14、i Registered DIMM接口为244pin,主要用于DDR2内存。 RIMM是Rambus公司生产的RDRAM内存所采用的接口类型,RIMM内存与DIMM的外型尺寸差不多,金手指同样也是双面的。RIMM有也184 Pin的针脚,在金手指的中间部分有两个靠的很近的卡口。RIMM非ECC版有16位数据宽度,ECC版则都是18位宽。由于RDRAM内存较高的价格,此类内存在DIY市场很少见到,RIMM接口也就难得一见了。 RDRAM内存 内存容量是指该内存条的存储容量,是内存条的关键性参数。内存容量以MB作为单位,可以简写为M。内存的容量一般都是2的整次方倍,比如64MB、128MB、256

15、MB等,一般而言,内存容量越大越有利于系统的运行。目前台式机中主流采用的内存容量为256MB或512MB,64MB、128MB的内存已较少采用。 系统对内存的识别是以Byte(字节)为单位,每个字节由8位二进制数组成,即8bit(比特,也称“位”)。按照计算机的二进制方式,1Byte=8bit;1KB=1024Byte;1MB=1024KB;1GB=1024MB;1TB=1024GB。 系统中内存的数量等于插在主板内存插槽上所有内存条容量的总和,内存容量的上限一般由主板芯片组和内存插槽决定。不同主板芯片组可以支持的容量不同,比如Inlel的810和815系列芯片组最高支持512MB内存,多余的

16、部分无法识别。目前多数芯片组可以支持到2GB以上的内存。此外主板内存插槽的数量也会对内存容量造成限制,比如使用128MB一条的内存,主板由两个内存插槽,最高可以使用256MB内存。因此在选择内存时要考虑主板内存插槽数量,并且可能需要考虑将来有升级的余地。 内存电压 内存正常工作所需要的电压值,不同类型的内存电压也不同,但各自均有自己的规格,超出其规格,容易造成内存损坏。SDRAM内存一般工作电压都在3.3伏左右,上下浮动额度不超过0.3伏;DDR SDRAM内存一般工作电压都在2.5伏左右,上下浮动额度不超过0.2伏;而DDR2 SDRAM内存的工作电压一般在1.8V左右。具体到每种品牌、每种

17、型号的内存,则要看厂家了,但都会遵循SDRAM内存3.3伏、DDR SDRAM内存2.5伏、DDR2 SDRAM内存1.8伏的基本要求,在允许的范围内浮动。 颗粒封装 颗粒封装其实就是内存芯片所采用的封装技术类型,封装就是将内存芯片包裹起来,以避免芯片与外界接触,防止外界对芯片的损害。空气中的杂质和不良气体,乃至水蒸气都会腐蚀芯片上的精密电路,进而造成电学性能下降。不同的封装技术在制造工序和工艺方面差异很大,封装后对内存芯片自身性能的发挥也起到至关重要的作用。 随着光电、微电制造工艺技术的飞速发展,电子产品始终在朝着更小、更轻、更便宜的方向发展,因此芯片元件的封装形式也不断得到改进。芯片的封装

18、技术多种多样,有DIP、POFP、TSOP、BGA、QFP、CSP等等,种类不下三十种,经历了从DIP、TSOP到BGA的发展历程。芯片的封装技术已经历了几代的变革,性能日益先进,芯片面积与封装面积之比越来越接近,适用频率越来越高,耐温性能越来越好,以及引脚数增多,引脚间距减小,重量减小,可靠性提高,使用更加方便。 • DIP封装 • TSOP封装 • BGA封装 • CSP封装 DIP封装 上个世纪的70年代,芯片封装基本都采用DIP(Dual ln-line Package,双列直插式封装)封装,此封装形式在当时具有适合PCB(印刷电路板)穿

19、孔安装,布线和操作较为方便等特点。DIP封装的结构形式多种多样,包括多层陶瓷双列直插式DIP,单层陶瓷双列直插式DIP,引线框架式DIP等。但DIP封装形式封装效率是很低的,其芯片面积和封装面积之比为1:1.86,这样封装产品的面积较大,内存条PCB板的面积是固定的,封装面积越大在内存上安装芯片的数量就越少,内存条容量也就越小。同时较大的封装面积对内存频率、传输速率、电器性能的提升都有影响。理想状态下芯片面积和封装面积之比为1:1将是最好的,但这是无法实现的,除非不进行封装,但随着封装技术的发展,这个比值日益接近,现在已经有了1:1.14的内存封装技术。 TSOP封装 到了上个世纪80年代,内

20、存第二代的封装技术TSOP出现,得到了业界广泛的认可,时至今日仍旧是内存封装的主流技术。TSOP是“Thin Small Outline Package”的缩写,意思是薄型小尺寸封装。TSOP内存是在芯片的周围做出引脚,采用SMT技术(表面安装技术)直接附着在PCB板的表面。TSOP封装外形尺寸时,寄生参数(电流大幅度变化时,引起输出电压扰动) 减小,适合高频应用,操作比较方便,可靠性也比较高。同时TSOP封装具有成品率高,价格便宜等优点,因此得到了极为广泛的应用。 TSOP封装内存 TSOP封装方式中,内存芯片是通过芯片引脚焊接在PCB板上的,焊点和PCB板的接触面积较小,使得芯片向PCB办

21、传热就相对困难。而且TSOP封装方式的内存在超过150MHz后,会产品较大的信号干扰和电磁干扰。 GA封装 20世纪90年代随着技术的进步,芯片集成度不断提高,I/O引脚数急剧增加,功耗也随之增大,对集成电路封装的要求也更加严格。为了满足发展的需要,BGA封装开始被应用于生产。BGA是英文Ball Grid Array Package的缩写,即球栅阵列封装。 采用BGA技术封装的内存,可以使内存在体积不变的情况下内存容量提高两到三倍,BGA与TSOP相比,具有更小的体积,更好的散热性能和电性能。BGA封装技术使每平方英寸的存储量有了很大提升,采用BGA封装技术的内存产品在相同容量下,体积只有T

22、SOP封装的三分之一;另外,与传统TSOP封装方式相比,BGA封装方式有更加快速和有效的散热途径。 BGA封装内存 BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。 说到BGA封装就不能不提Kingmax公司的专利TinyBGA技术,TinyBGA英文全称为Tiny Ball Grid Array

23、(小型球栅阵列封装),属于是BGA封装技术的一个分支。是Kingmax公司于1998年8月开发成功的,其芯片面积与封装面积之比不小于1:1.14,可以使内存在体积不变的情况下内存容量提高23倍,与TSOP封装产品相比,其具有更小的体积、更好的散热性能和电性能。 TinyBGA封装内存 采用TinyBGA封装技术的内存产品在相同容量情况下体积只有TSOP封装的1/3。TSOP封装内存的引脚是由芯片四周引出的,而TinyBGA则是由芯片中心方向引出。这种方式有效地缩短了信号的传导距离,信号传输线的长度仅是传统的TSOP技术的1/4,因此信号的衰减也随之减少。这样不仅大幅提升了芯片的抗干扰、抗噪性能

24、,而且提高了电性能。采用TinyBGA封装芯片可抗高达300MHz的外频,而采用传统TSOP封装技术最高只可抗150MHz的外频。 TinyBGA封装的内存其厚度也更薄(封装高度小于0.8mm),从金属基板到散热体的有效散热路径仅有0.36mm。因此,TinyBGA内存拥有更高的热传导效率,非常适用于长时间运行的系统,稳定性极佳。 CSP(Chip Scale Package),是芯片级封装的意思。CSP封装最新一代的内存芯片封装技术,其技术性能又有了新的提升。CSP封装可以让芯片面积与封装面积之比超过1:1.14,已经相当接近1:1的理想情况,绝对尺寸也仅有32平方毫米,约为普通的BGA的1

25、/3,仅仅相当于TSOP内存芯片面积的1/6。与BGA封装相比,同等空间下CSP封装可以将存储容量提高三倍。 CSP封装内存 CSP封装内存不但体积小,同时也更薄,其金属基板到散热体的最有效散热路径仅有0.2毫米,大大提高了内存芯片在长时间运行后的可靠性,线路阻抗显著减小,芯片速度也随之得到大幅度提高。 CSP封装内存芯片的中心引脚形式有效地缩短了信号的传导距离,其衰减随之减少,芯片的抗干扰、抗噪性能也能得到大幅提升,这也使得CSP的存取时间比BGA改善15%20%。在CSP的封装方式中,内存颗粒是通过一个个锡球焊接在PCB板上,由于焊点和PCB板的接触面积较大,所以内存芯片在运行中所产生的热

26、量可以很容易地传导到PCB板上并散发出去。CSP封装可以从背面散热,且热效率良好,CSP的热阻为35/W,而TSOP热阻40/W。 传输标准 内存是计算机内部最为关键的部件之一,其有很严格的制造要求。而其中的传输标准则代表着对内存速度方面的标准。不同类型的内存,无论是SDRAM、DDR SDRAM,还是RDRAM都有不同的规格,每种规格的内存在速度上是各不相同的。传输标准是内存的规范,只有完全符合该规范才能说该内存采用了此传输标准。比如说传输标准PC3200内存,代表着此内存为工作频率200MHz,等效频率为400MHz的DDR内存,也就是常说的DDR400。 传输标准术购买内存的首要选择条件

27、之一,它代表着该内存的速度。目前市场中所有的内存传输标准有SDRAM的PC100、PC133;DDR SDRAM的PC1600、PC2100、PC2700、PC3200、PC3500、PC3700;RDRAM的PC600、PC800和PC1066等。 • SDRAM传输标准 • DDR传输标准 • DDR2传输标准 • RDRAM传输标准 SDRAM传输标准 PC100 PC100是由JEDEC和英特尔共同制订的一个SDRAM内存条的标准,符合该标准的内存都称为PC100,其中的100代表该内存工作频率可达100MHz。JEDEC (Joint

28、Electron Device Engineering Council),电子元件工业联合会。JEDEC是由生产厂商们制定的国际性协议,主要为计算机内存制定。工业标准的内存通常指的是符合JEDEC标准的一组内存。大多数人认为的PC100内存,就是该内存能正常工作在前端总线(FSB)100MHz的系统中。其实PC100是一组很严格的规范,它包含有:内存时钟周期,在100MHZ外频工作时值为10ns;存取时间小于6ns;PCB必须为六层板;内存上必须有SPD等多方面的规定。 PC100中还详细的规定了,内存条上电路的各部分线长最大值与最小值;电路线宽与间距的精确规格;保证6层PCB板制作(分别为:

29、信号层、电源层、信号层、基层、信号层),具备完整的电源层与地线层;具备每层电路板间距离的详细规格;精确符合发送、载入、终止等请求的时间;详细的EEPROM编程规格;详细的SDRAM组成规格;特殊的标记要求;电磁干扰抑制;可选镀金印刷电路板等等。由此可见传输标准是一套相当复杂的内存标准,但具体的内存规范定义,我们没有必要去详细了解,只要了解内存符合这个规范,那么它的数据传输能到达多大,它所能提供的性能怎么样那就足够了。 从性能的角度来说,PC100的内存在主板设置在100MHZ外频,且在主板的BIOS选项中CL设置为2,此内存可以稳定的工作。 PC133 PC133是威盛公司联合了三星、现代、日

30、立、西门子、Micron和NEC等数家著名IT厂商联合推出的内存标准,其中的133指的是该内存工作频率可达133MHz。PC133 SDRAM的数据传输速率可以达到1.06GB/s。 严格地说,PC133和PC100内存在制造工艺上没有什么太大的不同,区别只是在制造PC133内存时多了一道筛选工序,把内存颗粒中外频超过133 MHz的挑选出来,焊接成高档一些的内存。 DDR传输标准 PC1600如果按照传统习惯传输标准的命名,PC1600(DDR200)应该是PC200。在当时DDR内存正在与RDRAM内存进行下一代内存标准之争,此时的RDRAM按照频率命名应该叫PC600和PC800。这样对

31、于不是很了解的人来说,自然会认为PC200远远落后于PC600,而JEDEC基于市场竞争的考虑,将DDR内存的命名规范进行了调整。传统习惯是按照内存工作频率来命名,而DDR内存则以内存传输速率命名。因此才有了今天的PC1600、PC2100、PC2700、PC3200、PC3500等。 PC1600的实际工作频率是100 MHz,而等效工作频率是200 MHz,那么它的数据传输率就为“数据传输率频率*每次传输的数据位数”,就是200MHz*64bit=12800Mb/s,再除以8就换算为MB为单位,就是1600MB/s,从而命名为PC1600。 DDR2传输标准 DDR2可以看作是DDR技术标

32、准的一种升级和扩展:DDR的核心频率与时钟频率相等,但数据频率为时钟频率的两倍,也就是说在一个时钟周期内必须传输两次数据。而DDR2采用“4 bit Prefetch(4位预取)”机制,核心频率仅为时钟频率的一半、时钟频率再为数据频率的一半,这样即使核心频率还在200MHz,DDR2内存的数据频率也能达到800MHz-也就是所谓的DDR2 800。 目前,已有的标准DDR2内存分为DDR2 400和DDR2 533,今后还会有DDR2 667和DDR2 800,其核心频率分别为100MHz、133MHz、166MHz和200MHz,其总线频率(时钟频率)分别为200MHz、266MHz、333

33、MHz和400MHz,等效的数据传输频率分别为400MHz、533MHz、667MHz和800MHz,其对应的内存传输带宽分别为3.2GB/sec、4.3GB/sec、5.3GB/sec和6.4GB/sec,按照其内存传输带宽分别标注为PC2 3200、PC2 4300、PC2 5300和PC2 6400。 RDRAM传输标准 PC600 RDRAM仍旧采用习惯的内存频率来命名。PC600的工作频率为300 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为600 MHz,所以命名为PC600。 PC800 PC800的工作频率为400 MHz,而其也是时钟上升期和下降期都传输数据

34、,因此其等效频率为800 MHz,所以命名为PC800。 PC1066 PC1066的工作频率为533 MHz,而其也是时钟上升期和下降期都传输数据,因此其等效频率为1066 MHz,所以命名为PC1066。 内存负责向CPU提供运算所需的原始数据,而目前CPU运行速度超过内存数据传输速度很多,因此很多情况下CPU都需要等待内存提供数据,这就是常说的“CPU等待时间”。内存传输速度越慢,CPU等待时间就会越长,系统整体性能受到的影响就越大。因此,快速的内存是有效提升CPU效率和整机性能的关键之一。 在实际工作时,无论什么类型的内存,在数据被传输之前,传送方必须花费一定时间去等待传输请求的响应,

35、通俗点说就是传输前传输双方必须要进行必要的通信,而这种就会造成传输的一定延迟时间。CL设置一定程度上反映出了该内存在CPU接到读取内存数据的指令后,到正式开始读取数据所需的等待时间。不难看出同频率的内存,CL设置低的更具有速度优势。 上面只是给大家建立一个基本的CL概念,而实际上内存延迟的基本因素绝对不止这些。内存延迟时间有个专门的术语叫“Latency”。要形象的了解延迟,我们不妨把内存当成一个存储着数据的数组,或者一个EXCEL表格,要确定每个数据的位置,每个数据都是以行和列编排序号来标示,在确定了行、列序号之后该数据就唯一了。内存工作时,在要读取或写入某数据,内存控制芯片会先把数据的列地

36、址传送过去,这个RAS信号(Row Address Strobe,行地址信号)就被激活,而在转化到行数据前,需要经过几个执行周期,然后接下来CAS信号(Column Address Strobe,列地址信号)被激活。在RAS信号和CAS信号之间的几个执行周期就是RAS-to-CAS延迟时间。在CAS信号被执行之后同样也需要几个执行周期。此执行周期在使用标准PC133的SDRAM大约是2到3个周期;而DDR RAM则是4到5个周期。在DDR中,真正的CAS延迟时间则是2到2.5个执行周期。RAS-to-CAS的时间则视技术而定,大约是5到7个周期,这也是延迟的基本因素。 CL设置较低的内存具备更

37、高的优势,这可以从总的延迟时间来表现。内存总的延迟时间有一个计算公式,总延迟时间=系统时钟周期CL模式数+存取时间(tAC)。首先来了解一下存取时间(tAC)的概念,tAC是Access Time from CLK的缩写,是指最大CAS延迟时的最大数输入时钟,是以纳秒为单位的,与内存时钟周期是完全不同的概念,虽然都是以纳秒为单位。存取时间(tAC)代表着读取、写入的时间,而时钟频率则代表内存的速度。 举个例子来计算一下总延迟时间,比如一条DDR333内存其存取时间为6ns,其内存时钟周期为6ns(DDR内存时钟周期1X2/内存频率,DDR333内存频率为333,则可计算出其时钟周期为6ns)。

38、我们在主板的BIOS中将其CL设置为2.5,则总的延迟时间6ns X2.56ns21ns,而如果CL设置为2,那么总的延迟时间6ns X26ns18 ns,就减少了3ns的时间。 从总的延迟时间来看,CL值的大小起到了很关键的作用。所以对系统要求高和喜欢超频的用户通常喜欢购买CL值较低的内存。目前各内存颗粒厂商除了从提高内存时钟频率来提高DDR的性能之外,已经考虑通过更进一步的降低CAS延迟时间来提高内存性能。不同类型内存的典型CL值并不相同,例如目前典型DDR的CL值为2.5或者2,而大部分DDR2 533的延迟参数都是4或者5,少量高端DDR2的CL值可以达到3。 不过,并不是说CL值越低

39、性能就越好,因为其它的因素会影响这个数据。例如,新一代处理器的高速缓存较有效率,这表示处理器比较少地直接从内存读取数据。再者,列的数据会比较常被存取,所以RAS-to-CAS的发生几率也大,读取的时间也会增多。最后,有时会发生同时读取大量数据的情形,在这种情形下,相邻的内存数据会一次被读取出来,CAS延迟时间只会发生一次。 选择购买内存时,最好选择同样CL设置的内存,因为不同速度的内存混插在系统内,系统会以较慢的速度来运行,也就是当CL2.5和CL2的内存同时插在主机内,系统会自动让两条内存都工作在CL2.5状态,造成资源浪费 ECC校验 ECC内存即纠错内存,简单的说,其具有发现错误,纠正错

40、误的功能,一般多应用在高档台式电脑/服务器及图形工作站上,这将使整个电脑系统在工作时更趋于安全稳定。 内存是一种电子器件,在其工作过程中难免会出现错误,而对于稳定性要求高的用户来说,内存错误可能会引起致命性的问题。内存错误根据其原因还可分为硬错误和软错误。硬件错误是由于硬件的损害或缺陷造成的,因此数据总是不正确,此类错误是无法纠正的;软错误是随机出现的,例如在内存附近突然出现电子干扰等因素都可能造成内存软错误的发生。 为了能检测和纠正内存软错误,首先出现的是内存“奇偶校验”。内存中最小的单位是比特,也称为“位”,位有只有两种状态分别以1和0来标示,每8个连续的比特叫做一个字节(byte)。不带

41、奇偶校验的内存每个字节只有8位,如果其某一位存储了错误的值,就会导致其存储的相应数据发生变化,进而导致应用程序发生错误。而奇偶校验就是在每一字节(8位)之外又增加了一位作为错误检测位。在某字节中存储数据之后,在其8个位上存储的数据是固定的,因为位只能有两种状态1或0,假设存储的数据用位标示为1、1、1、0、0、1、0、1,那么把每个位相加(111001015),结果是奇数。对于偶校验,校验位就定义为1,反之则为0;对于奇校验,则相反。当CPU读取存储的数据时,它会再次把前8位中存储的数据相加,计算结果是否与校验位相一致。从而一定程度上能检测出内存错误,奇偶校验只能检测出错误而无法对其进行修正,

42、同时虽然双位同时发生错误的概率相当低,但奇偶校验却无法检测出双位错误。 ECC(Error Checking and Correcting,错误检查和纠正)内存,它同样也是在数据位上额外的位存储一个用数据加密的代码。当数据被写入内存,相应的ECC代码与此同时也被保存下来。当重新读回刚才存储的数据时,保存下来的ECC代码就会和读数据时产生的ECC代码做比较。如果两个代码不相同,他们则会被解码,以确定数据中的那一位是不正确的。然后这一错误位会被抛弃,内存控制器则会释放出正确的数据。被纠正的数据很少会被放回内存。假如相同的错误数据再次被读出,则纠正过程再次被执行。重写数据会增加处理过程的开销,这样则会导致系统性能的明显降低。如果是随机事件而非内存的缺点产生的错误,则这一内存地址的错误数据会被再次写入的其他数据所取代。 使用ECC校验的内存,会对系统的性能造成不小的影响,不过这种纠错对服务器等应用而言是十分重要的,带ECC校验的内存价格比普通内存要昂贵许多。内存基本知识大全内存是主板上重要的部件之一,它是存储CPU与外围设备沟通的数据与程序的部件。在主机中,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com