功能高分子导电高分子.pptx

上传人:一*** 文档编号:77813278 上传时间:2023-03-16 格式:PPTX 页数:247 大小:4.71MB
返回 下载 相关 举报
功能高分子导电高分子.pptx_第1页
第1页 / 共247页
功能高分子导电高分子.pptx_第2页
第2页 / 共247页
点击查看更多>>
资源描述

《功能高分子导电高分子.pptx》由会员分享,可在线阅读,更多相关《功能高分子导电高分子.pptx(247页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、本章主要内容一、前言 二、导电高聚物的定义,分类三、导电高聚物的导电机理四、导电高聚物的应用第1页/共247页一、前言绝缘体 1023超导体 4通常,聚合物材料属于绝缘体范畴。电导率,s/cm(西门子/厘米)按电学性能分类第2页/共247页材料导电率范围材料材料电导率电导率/-1cm-1典典 型型 代代 表表绝缘体绝缘体10-10石英、聚乙烯、聚苯乙烯、聚四石英、聚乙烯、聚苯乙烯、聚四氟乙烯氟乙烯半导体半导体10-10102硅、锗、聚乙炔硅、锗、聚乙炔导导 体体102108汞、银、铜、石墨汞、银、铜、石墨超导体超导体108铌铌(9.2 K)、铌铝锗合金、铌铝锗合金(23.3K)、聚氮硫聚氮硫(

2、0.26 K)第3页/共247页第4页/共247页导电的基本概念载流子材料在电场作用下能产生电流是由于介质中存在能自由迁移的带电质点,这种带电质点被称为载流子。常见的载流子包括:自由电子、空穴、正负离子,以及其它类型的荷电微粒。载流子的密度是衡量材料导电能力的重要参数之一。第5页/共247页 材料的导电类型通常根据载流子的不同进行划分:材料的导电类型通常根据载流子的不同进行划分:电子导电(载流子是自由电子或空穴),如:电子导电(载流子是自由电子或空穴),如:金属材料,(高分子材料)金属材料,(高分子材料)离子导电(载流子是正离子或负离子),如:离子导电(载流子是正离子或负离子),如:电解质溶液

3、电解质溶液导电的基本概念第6页/共247页导电高分子聚合物是分子型材料,原子与原子间通过共享价电子形成共价键而构成分子,共价键属于定域键,价电子只能在分子内的一定范围内自由迁移,缺少可以长距离迁移的自由电子,因此,高分子材料属于绝缘材料的范畴。第7页/共247页世界上第一种导电聚合物:掺杂聚乙炔19771977年,美国化学家年,美国化学家MacDiarmidMacDiarmid,物理学家,物理学家HeegerHeeger和日本化学家和日本化学家ShirakawaShirakawa首次发现首次发现掺杂碘的聚乙炔掺杂碘的聚乙炔具具有金属的特性有金属的特性 。并因此获得。并因此获得20002000年

4、诺贝尔化学奖年诺贝尔化学奖使用使用Ziggler-NattaZiggler-Natta催化剂催化剂AlEtAlEt3 3/Ti(OBu)/Ti(OBu)4 4,Ti,Ti的浓的浓度为度为3mmol/L3mmol/L,Al/TiAl/Ti约为约为3-43-4。催化剂溶于甲苯中,。催化剂溶于甲苯中,冷却到冷却到-78-78度度,通入乙炔,可在溶液表面生成顺式的聚通入乙炔,可在溶液表面生成顺式的聚乙炔薄膜。掺杂后电导率达到乙炔薄膜。掺杂后电导率达到10105 5S/cmS/cm量级量级 第8页/共247页 研究成果于研究成果于19771977年发表在年发表在Chem.Comm.Chem.Comm.杂

5、志上,杂志上,题题目目是是:有有机机导导电电高高分分子子的的合合成成,聚聚乙乙炔炔(CH)(CH)n n的的卤卤化化衍衍生生物物,聚聚乙乙炔炔薄薄膜膜用用碘碘蒸蒸汽汽氧氧化化后后,导导电电性性增增加加了了千千万倍万倍第9页/共247页掺杂导电高分子材料的导电机理碘分子从聚乙炔抽取一个电子形成I3,聚乙炔分子形成带正电荷的自由基阳离子,在外加电场作用下双键上的电子可以非常容易地移动,结果使双键可以成功地延着分子移动,实现其导电能力。第10页/共247页第11页/共247页导电高分子的应用v1990 1990 年年R.H.FriendR.H.Friend首次报道。首次报道。v高分子发光二极管具有颜

6、色可调、高分子发光二极管具有颜色可调、可弯曲、大面积和低成本等优点。可弯曲、大面积和低成本等优点。实用化的突破口实用化的突破口 1.发光二极管发光二极管第12页/共247页导电高分子的应用v一个分子类似于一根导线。v可用于高灵敏度检测、超大规模集成技术等。v“模板聚合、分子束沉积等方法制备“分子导线”或导电高分子微管(或纳米管)2.分子导线分子导线第13页/共247页导电高分子的应用3.二次电池二次电池高分子掺杂态高分子掺杂态储存电能、脱储存电能、脱掺杂过程中释掺杂过程中释放电能放电能 全塑电池全塑电池输出电压3V3V、电池容量3mA.h3mA.h,复充放电上千次。第14页/共247页导电高分

7、子的应用4.生物传感器生物传感器葡萄糖传感葡萄糖传感器、尿素传器、尿素传感器、乳酸感器、乳酸传感器、胆传感器、胆固醇传感器固醇传感器第15页/共247页导电高分子的应用5.气体传感器气体传感器导电高分子与大气某些介质作用导电高分子与大气某些介质作用-电导率改变电导率改变,除去介质除去介质-恢复。恢复。(掺杂(掺杂/或脱掺杂过程)。或脱掺杂过程)。可用作选择性高、灵敏度高和重复可用作选择性高、灵敏度高和重复性好的气体传感器。性好的气体传感器。第16页/共247页导电高分子的应用导电性可以在绝缘体、半导体、金属导体之间变化,不同的吸波性能v密度小轻v加工性能薄v稳定性较好高温使用 6.雷达隐身材料

8、雷达隐身材料第17页/共247页导电高分子的应用v掺杂/脱掺杂实现导体-绝缘体之间的转变,v且电位、PHPH、掺杂量等变化伴随颜色变化,可用于电显示7.电显示材料电显示材料第18页/共247页二、导电高分子分类狭义的定义:由碳、氢和氮、硫、氧等杂原子组成的具有本征导电性能的有机高分子材料。Conducting polymers(CPs)Conductive polymers Conjugated Conductive Polymers Organic Polymeric Conductors导电聚合物亦被称为:金属化聚合物Metallic Polymer合成金属Synthetic Metal第

9、19页/共247页2 2、导电高分子的发现1970s Poly(p-phenylene sulfide),PPS 聚苯硫醚 thermoplastics1971 Poly(acetylene)well-defined synthesis 1862 Oxidation polymerization of aniline1916 Spontaneous polymerization pyrrole black1957 Electrochemical oxidation of aromatic monomers1967 P(Py),Poly(thiophene),Poly(furan)1968 El

10、ectropolymerizaton of poly(pyrrole)第20页/共247页1978日本筑波大学H.Shirakawa(白川英树)宾夕法尼亚大学发现:聚乙炔薄膜经AsF5或I2掺杂后呈现明显的金属特性,电导率可达103S/cm,比未掺杂前提高了十几个数量级。有机聚合物不能作为导电介质的观念被打破,全世界范围内掀起了导电高分子的研究热潮。第21页/共247页2000年诺贝尔化学奖获得者第22页/共247页黑格(Alan J.Heeger,1936)小传1936年12月22日生于美国衣阿华州1957年毕业于内布拉斯加大学物理系,获物理学土学位1961年获加州大学伯克利分校物理博士学位

11、。1962年至1982年任教于宾夕法尼亚大学物理系,1967年任该校物理系教授。后转任加利福尼亚大学圣芭芭拉分校物理系教授并任高分子及有机固体研究所所长20世纪70年代末,在塑料导电研究领域取得了突破性的发现,开创导电聚合物这一崭新研究领域1990年创立UNIAX公司并自任董事长及总裁2000年,因在导电聚合物方面的贡献荣获诺贝尔化学奖 共获美国专利40余项发表论文635篇(统计至1999年6月)。据SCI所作的10年统计(19801989),在全世界各研究领域所有发表论文被引用次数的排名中(包括所有学科)他名列第64名,是该l0年统计中唯一进入前100名的物理学家。在聚合物导电材料方面开创性

12、的贡献有:1973年发表对TTFTCNQ类具有金属电导的有机电荷转移复合物的研究,开创了有机金属导体及有机超导体研究的先河1976年发表对聚乙炔的掺杂研究,开创了导电聚合物的研究领域1991年提出用可溶性共轭聚合物实现高效聚合物发光器件,为聚合物发光器件的实用开辟了新途径1992年提出“对离子诱导加工性”的新概念,从而实现了人们多年来发展兼具高电导及加工性的导电聚合物的梦想,为导电聚合物实用化提出了新方向1996年首次发表共轭聚合物固态下的光泵浦激光。座右铭:去冒险吧座右铭:去冒险吧第23页/共247页麦克迪尔米德小传(Alan G.MacDiarmid,1929)发表过六百多篇学术论文拥有二

13、十项专利技术1927年生于新西兰。曾就读于新西兰大学、美国威斯康星大学以及英国剑桥大学。1955年开始在宾夕法尼亚大学任教。1973年开始研究导电高分子2000年获诺贝尔化学奖第24页/共247页白川英树(Hideki Shirakawa,1936)小传1983年他的研究论文关于聚乙炔的研究获得日本高分子学会奖,还著有功能性材料入门、物质工学的前沿领域等书。1961年毕业于东京工业大学理工学部化学专业,毕业后留校于该校资源化学研究所任助教1976年到美国宾夕法尼亚大学留学1979年回国后到筑波大学任副教授1982年升为教授。2000年获诺贝尔化学奖第25页/共247页导电高分子的分类导电高分子

14、复合型导电高分子本征导电高分子(结构导电高分子)电子导电聚合物离子导电聚合物氧化还原型导电聚合物第26页/共247页第五章第五章 导电高分子1.3 导电高分子的类型 按照材料的结构与组成,可将导电高分子分成两大类。一类是结构型(本征型)导电高分子,另一类是复合型导电高分子。结构型导电高分子 结构型导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。第27页/共247页 迄今为止,国内外对结构型导电高分子研究得较为深入的品种有聚乙炔、聚对苯硫醚、聚对苯撑、聚苯胺、聚吡咯、聚噻吩以及TCN

15、Q传荷络合聚合物等。其中以掺杂型聚乙炔具有最高的导电性,其电导率可达5103104-1cm-1(金属铜的电导率为105-1cm-1)。第28页/共247页第五章第五章 导电高分子 目前,对结构型导电高分子的导电机理、聚合物结构与导电性关系的理论研究十分活跃。应用性研究也取得很大进展,如用导电高分子制作的大功率聚合物蓄电池、高能量密度电容器、微波吸收材料、电致变色材料,都已获得成功。第29页/共247页第五章第五章 导电高分子 但总的来说,结构型导电高分子的实际应用尚不普遍,关键的技术问题在于大多数结构型导电高分子在空气中不稳定,导电性随时间明显衰减。此外,导电高分子的加工性往往不够好,也限制了

16、它们的应用。科学家们正企图通过改进掺杂剂品种和掺杂技术,采用共聚或共混的方法,克服导电高分子的不稳定性,改善其加工性。第30页/共247页第五章第五章 导电高分子复合型导电高分子 复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料,其中以分散复合最为常用。第31页/共247页第五章第五章 导电高分子 与结构型导电高分子不同,在复合型导电高分子中,高分子材料本身并不具备导电性,只充当了粘合剂的角色。导电性是通过混合在其中的导电性的物质如炭黑、金属粉末等获得的。由于它们制备方便,有较强的实用性,因此在结构

17、型导电高分子尚有许多技术问题没有解决的今天,人们对它们有着极大的兴趣。复合型导电高分子用作导电橡胶、导电涂料、导电粘合剂、电磁波屏蔽材料和抗静电材料,在许多领域发挥着重要的作用。第32页/共247页第五章第五章 导电高分子超导体高分子 超导体是导体在一定条件下,处于无电阻状态的一种形式。超导现象早在1911年就被发现。由于超导态时没有电阻,电流流经导体时不发生热能损耗,因此在电力远距离输送、制造超导磁体等高精尖技术应用方面有重要的意义。第33页/共247页第五章第五章 导电高分子 目前,巳经发现的许多具有超导性的金属和合金,都只有在超低温度下或超高压力下才能转变为超导体。显然这种材料作为电力、

18、电器工业材料来应用,在技术上、经济上都是不利的,因此,研制具有较高临界超导温度的超导体是人们关切的研究课题。第34页/共247页第五章第五章 导电高分子 超导金属中,超导临界温度最高的是铌(Nb),Tc9.2K。超导合金中则以铌铝锗合金(Nb/Al/Ge)具有最高的超导临界温度,Tc23.2K。在高分子材料中,已发现聚氮硫在0.2K时具有超导性。尽管它是无机高分子,Tc也比金属和合金低,但由于聚合物的分子结构的可变性十分广泛,因此,专家们预言,制造出超导临界温度较高的高分子超导体是大有希望的。研究的目标是超导临界温度达到液氮温度(77K)以上,甚至是常温超导材料。第35页/共247页第五章第五

19、章 导电高分子2.结构型导电高分子 根据导电载流子的不同,结构型导电高分子有两种导电形式:电子导电和离子传导。对不同的高分子,导电形式可能有所不同,但在许多情况下,高分子的导电是由这两种导电形式共同引起的。如测得尼龙66在120以上的导电就是电子导电和离子导电的共同结果。第36页/共247页第五章第五章 导电高分子 一般认为,四类聚合物具有导电性:高分子电解质、共轭体系聚合物、电荷转移络合物和金属有机螯合物。其中除高分子电解质是以离子传导为主外,其余三类聚合物都是以电子传导为主的。这几类导电高分子目前都有不同程度的发展。下面主要介绍共轭体系聚合物。第37页/共247页第五章第五章 导电高分子2

20、.1 共轭聚合物的电子导电共轭体系的导电机理共轭聚合物是指分子主链中碳碳单键和双键交替排列的聚合物,典型代表是聚乙炔:CH=CH 由于分子中双键的电子的非定域性,这类聚合物大都表现出一定的导电性。第38页/共247页第五章第五章 导电高分子 按量子力学的观点,具有本征导电性的共轭体系必须具备两条件。第一,分子轨道能强烈离域;第二,分子轨道能互相重叠。满足这两个条件的共轭体系聚合物,便能通过自身的载流子产生和输送电流。在共轭聚合物中,电子离域的难易程度,取决于共轭链中电子数和电子活化能的关系。理论与实践都表明,共轭聚合物的分子链越长,电子数越多,则电子活化能越低,亦即电子越易离域,则其导电性越好

21、。下面以聚乙炔为例进行讨论。第39页/共247页第五章第五章 导电高分子 聚乙炔具有最简单的共轭双键结构:(CH)x。组成主链的碳原子有四个价电子,其中三个为电子(sp2杂化轨道),两个与相邻的碳原子连接,一个与氢原子链合,余下的一个价电子电子(Pz轨道)与聚合物链所构成的平面相垂直(图51)。第40页/共247页第五章第五章 导电高分子图51 (CH)x的价电子轨道第41页/共247页第五章第五章 导电高分子 随电子体系的扩大,出现被电子占据的成键态和空的*反键态。随分子链的增长,形成能带,其中成键状态形成价带,而*反键状态则形成导带(图52)。如果电子在链上完全离域,并且相邻的碳原子间的链

22、长相等,则*能带间的能隙(或称禁带)消失,形成与金属相同的半满能带而变为导体。第42页/共247页第五章第五章 导电高分子图52 共轭体系Ax的长度x与成键反键电子状态第43页/共247页第五章第五章 导电高分子 从图中可见,要使材料导电,电子必须具有越过禁带宽度的能量EG,亦即电子从其最高占有轨道(基态)向最低空轨道(激发态)跃迁的能量E(电子活化能)必须大于EG。研究表明,线型共轭体系的电子活化能E与电子数N的关系为:(59)第44页/共247页第五章第五章 导电高分子 反式聚乙炔的禁带宽度推测值为1.35eV,若用式(59)推算,N16,可见聚合度为8时即有自由电子电导。除了分子链长度和

23、电子数影响外,共轭链的结构也影响聚合物的导电性。从结构上看,共轭链可分为“受阻共轭”和“无阻共轭”两类。前者导电性较低,后者则较高。第45页/共247页第五章第五章 导电高分子 受阻共轭是指共轭链分子轨道上存在“缺陷”。当共轭链中存在庞大的侧基或强极性基团时,往往会引起共轭链的扭曲、折叠等,从而使电子离域受到限制。电子离域受阻程度越大,则分子链的电子导电性就越差。如下面的聚烷基乙炔和脱氯化氢聚氯乙烯,都是受阻共轭聚合物的典型例子。第46页/共247页第五章第五章 导电高分子聚烷基乙炔10-1510-10-1cm-1脱氯化氢PVC10-1210-9-1cm-1第47页/共247页第五章第五章 导

24、电高分子 无阻共轭是指共轭链分子轨道上不存在“缺陷”,整个共轭链的电子离城不受响。因此,这类聚合物是较好的导电材料或半导体材料。例如反式聚乙炔,聚苯撑、聚并苯、热解聚丙烯腈等,都是无阻共轭链的例子。顺式聚乙炔分子链发生扭曲,电子离域受到一定阻碍,因此,其电导率低于反式聚乙炔。第48页/共247页第五章第五章 导电高分子聚乙炔顺式:10-7-1cm-1反式:10-3-1cm-1聚苯撑10-3-1cm-1聚并苯10-4-1cm-1热解聚丙烯腈10-1-1cm-1第49页/共247页第五章第五章 导电高分子共轭聚合物的掺杂及导电性 从前面的讨论可知,尽管共轭聚合物有较强的导电倾向,但电导率并不高。反

25、式聚乙炔虽有较高的电导率,但精细的研究发现,这是由于电子受体型的聚合催化剂残留所致。如果完全不含杂质,聚乙炔的电导率也很小。然而,共轭聚合物的能隙很小,电子亲和力很大,这表明它容易与适当的电子受体或电子给体发生电荷转移。第50页/共247页第五章第五章 导电高分子 例如,在聚乙炔中添加碘或五氧化砷等电子受体,由于聚乙炔的电子向受体转移,电导率可增至104-1cm-1,达到金属导电的水平。另一方面,由于聚乙炔的电子亲和力很大,也可以从作为电子给体的碱金属接受电子而使电导率上升。这种因添加了电子受体或电子给体而提高电导率的方法称为“掺杂”。第51页/共247页第五章第五章 导电高分子 共轭聚合物的

26、掺杂与无机半导体掺杂不同,其掺杂浓度可以很高,最高可达每个链节0.1个掺杂剂分子。随掺杂量的增加,电导率可由半导体区增至金属区。掺杂的方法可分为化学法和物理法两大类,前者有气相掺杂、液相掺杂、电化学掺杂、光引发掺杂等,后者有离子注入法等。掺杂剂有很多种类型,下面是一些主要品种。第52页/共247页第五章第五章 导电高分子(1)电子受体卤素:Cl2,Br2,I2,ICl,ICI3,IBr,IF5 路易氏酸:PF5,As,SbF5,BF3,BCI3,BBr3,SO3 质子酸:HF,HCl,HNO3,H2SO4,HCIO4,FSO3H,ClSO3H,CFSO3H 过渡金属卤化物:TaF5,WFs,B

27、iF5,TiCl4,ZrCl4,MoCl5,FeCl3 过渡金属化合物:AgClO3,AgBF4,H2IrCl6,La(NO3)3,Ce(NO3)3 有机化合物;四氰基乙烯(TCNE),四氰代二次甲基苯醌(TCNQ),四氯对苯醌、二氯二氰代苯醌(DDQ)第53页/共247页第五章第五章 导电高分子(2)电子给体 碱金属:Li,Na,K,Rb,Cs。电化学掺杂剂:R4N+,R4P+(R CH3,C6H5等)。如果用Px表示共轭聚合物,P表示共轭聚合物的基本结构单元(如聚乙炔分子链中的CH),A和D分别表示电子受体和电子给予体,则掺杂可用下述电荷转移反应式来表示:第54页/共247页第五章第五章

28、导电高分子 电子受体或电子给体分别接受或给出一个电子变成负离子A-或正离子D+,但共轭聚合物中每个链节(P)却仅有y(y0.1)个电子发生了迁移。这种部分电荷转移是共轭聚合物出现高导电性的极重要因素。从图53、图54可见,当聚乙炔中掺杂剂含量y从0增加到0.01时,其电导率增加了7个数量级,电导活化能则急剧下降。第55页/共247页第五章第五章 导电高分子 图53 聚乙炔电导率与图 54 聚乙炔电导活化能 掺杂剂浓度的关系 与掺杂剂浓度的关系第56页/共247页第五章第五章 导电高分子典型的共轭聚合物 除前面提到的聚乙炔外,聚苯撑、聚并苯,聚吡咯、聚噻吩等都是典型的共轭聚合物。另外一些由饱和链

29、聚合物经热解后得到的梯型结构的共轭聚合物,也是较好的导电高分子,如热解聚丙烯腈、热解聚乙烯醇等。下面介绍几种典型的共轭聚合物。第57页/共247页第五章第五章 导电高分子 聚乙炔是一种研究得最为深入的共轭聚合物。它是由乙炔在钛酸正丁酯三乙基铝Ti(OC4H9)AlEt3为催化剂、甲苯为溶液的体系中催化聚合而成;当催化剂浓度较高时,可制得固体聚乙炔。而催化剂浓度较低时,可制得聚乙炔凝胶,这种凝胶可纺丝制成纤维。聚乙炔为平面结构分子,有顺式和反式两种异构体。在150左右加热或用化学、电化学方法能将顺式聚乙炔转化成热力学上更稳定的反式聚乙炔。第58页/共247页第五章第五章 导电高分子顺式聚乙炔反式

30、聚乙炔=10-3-1cm-1=10-7-1cm-1第59页/共247页第五章第五章 导电高分子 聚乙炔虽有较典型的共轭结构,但电导率并不高。反式聚乙炔的电导率为10-3-1cm-1,顺式聚乙炔的电导率仅10-7-1cm-1。但它们极易被掺杂。经掺杂的聚乙炔,电导率可大大提高。例如,顺式聚乙炔在碘蒸气中进行P型掺杂(部分氧化),可生成(CHIy)x(y0.20.3),电导率可提高到102104-1cm-1,增加911个数量级。可见掺杂效果之显著。表52是顺式聚乙炔经掺杂后的电导率。第60页/共247页第五章第五章 导电高分子表52 掺杂的顺式聚乙炔在室温下的电导率掺杂剂掺杂剂掺杂剂掺杂剂/CH(

31、摩尔比)(摩尔比)(-1cm-1)I20.253.60104AsF50.285.60104AgClO40.0723.0102萘钠萘钠0.568.0103(NBu)4NClO40.129.70104第61页/共247页第五章第五章 导电高分子 聚乙炔最常用的掺杂剂有五氟化砷(AsF5)、六氟化锑(SbF6),碘(I2)、溴(Br2),三氯化铁(FeCl3),四氯化锡(SnCl4)、高氯酸银(AgClO4)等。掺杂量一般为0.012(掺杂剂/CH)。研究表明,聚乙炔的导电性随掺杂剂量的增加而上升,最后达到定值(见图55)。从图中可见,当掺杂剂用量达到2之后,电导率几乎不再随掺杂剂用量的增加而提高。

32、第62页/共247页第五章第五章 导电高分子图56 电导率与掺杂剂量的关系第63页/共247页第五章第五章 导电高分子 若将掺杂后的聚乙炔暴露在空气中,其电导率随时间的延长而明显下降。这是聚乙炔至今尚不能作为导电材料推广使用的主要原因之一。例如电导率为104-1cm-1的聚乙炔,在空气中存放一个月,电导率降至103-1cm-1。但若在聚乙炔表面涂上一层聚对二甲苯,则电导率的降低程度可大大减缓。聚乙炔是高度共轭的刚性聚合物,不溶不熔,加工十分困难,也是限制其应用的个因素。可溶性导电聚乙炔的研究工作正在进行之中。第64页/共247页第五章第五章 导电高分子 聚苯硫醚(PPS)是近年来发展较快的一种

33、导电高分子,它的特殊性能引起人们的关注。聚苯硫醚是由二氯苯在N甲基吡咯烷酮中与硫化钠反应制得的。第65页/共247页第五章第五章 导电高分子 PPS是一种具有较高热稳定性和优良耐化学腐蚀性以及良好机械性能的热塑性材料,既可模塑,又可溶于溶剂,加工性能良好。纯净的聚苯硫醚是优良的绝缘体,电导率仅为10-1510-16-1cm-1。但经AsF5掺杂后,电导率可高达2102-1cm-1。由元素分析及红外光谱结果确认,掺杂时分子链上相邻的两个苯环上的邻位碳碳原子间发生了交联反应,形成了共轭结构的聚苯并噻吩。第66页/共247页第五章第五章 导电高分子 I2,Br2等卤素没有足够的氧化能力来夺取聚苯硫醚

34、中的电子,SO3、萘钠等会使聚苯硫醚降解,因此都不能用作掺杂剂。比聚苯硫醚空间位阻大的聚间苯硫醚(MPS),用AsF5掺杂的效果较差,电导率仅为10-1-cm-1。第67页/共247页第五章第五章 导电高分子 热解聚丙烯腈是一种本身具有较高导电性的材料,不经掺杂的电导率就达10-1-1cm-1。它是由聚丙烯腈在400600温度下热解环化、脱氢形成的梯型含氮芳香结构的产物。通常是先将聚丙烯腈加工成纤维或薄膜,再进行热解,因此其加工性可从聚丙烯腈获得。同时由于其具有较高的分子量,故导电性能较好。由聚丙烯腈热解制得的导电纤维,称为黑色奥纶(Black Orlon)。聚丙烯腈热解反应式为:第68页/共

35、247页第五章第五章 导电高分子第69页/共247页第五章第五章 导电高分子 如果将上述产物进一步热裂解至氮完全消失,可得到电导率高达10-1cm-1的高抗张碳纤维。将溴代基团引入聚丙烯腈,可制得易于热裂解环化的共聚丙烯腈。这种溴代基团在热裂解时起催化作用,加速聚丙烯腈的环化,提高热裂解产物的得率。聚乙烯醇、聚酰亚胺经热裂解后都可得到类似的导电高分子。第70页/共247页第五章第五章 导电高分子 石墨是一种导电性能良好的大共轭体系。受石墨结构的启发,美国贝尔实验室的卡普朗(M.L.Kaplan)等人和日本的村上睦明等人分别用了3,4,9,10二萘嵌苯四酸二酐(PTCDA)进行高温聚合,制得了有

36、类似石墨结构的聚萘,具有优良的导电性。聚萘的合成过程如下图所示:第71页/共247页第五章第五章 导电高分子H2.0第72页/共247页第五章第五章 导电高分子 聚萘的导电性与反应温度有关。温度越高,石墨化程度也越高,导电性就越大,见表55。聚萘的贮存稳定性良好,在室温下存放4个月,其电导率不变。聚萘的电导率对环境温度的依赖性很小,显示了金属导电性的特征。人们预计,随着研究的深入,聚萘有可能用作导电羰纤维、导磁屏蔽材料、高能电池的电极材料和复合型导电高分子的填充料。第73页/共247页第五章第五章 导电高分子表55 反应温度对聚萘导电性的影响反应温度反应温度 /-1cm-1530210-160

37、010800210210005.710212001.1103返回第74页/共247页3 复合型导电高分子3.1 复合型导电高分子的基本概念 复合型导电高分子是以普通的绝缘聚合物为主要基质(成型物质),并在其中掺入较大量的导电填料配制而成的。因此,无论在外观形式和制备方法方面,还是在导电机理方面,都与掺杂型结构导电高分子完全不同。第75页/共247页 从原则上讲,任何高分子材料都可用作复合型导电高分子的基质。在实际应用中,需根据使用要求、制备工艺、材料性质和来源、价格等因素综合考虑,选择合适的高分子材料。目前用作复合型导电高分子基料的主要有聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、ABS、环氧树脂、丙

38、烯酸酯树脂、酚醛树脂、不饱和聚酯、聚氨酯、聚酰亚胺、有机硅树脂等。此外,丁基橡胶、丁苯橡胶、丁腈橡胶和天然橡胶也常用作导电橡胶的基质。第76页/共247页导电高分子中高分子基料的作用是将导电颗粒牢固地粘结在一起,使导电高分子具有稳定的导电性,同时它还赋于材料加工性。高分子材料的性能对导电高分中的机械强度、耐热性、耐老化性都有十分重要的影响。导电填料在复合型导电高分子中起提供载流子的作用,因此,它的形态、性质和用量直接决定材料的导电性。第77页/共247页 常用的导电填料有金粉、银粉、铜粉、镍粉、钯粉、钼粉、铝粉、钴粉、镀银二氧化硅粉、镀银玻璃微珠、炭黑、石墨、碳化钨、碳化镍等。部分导电填料的导

39、电率列于表 511 中。从表中可见,银粉具有最好的导电性,故应用最广泛。炭黑虽导电率不高,但其价格便宜,来源丰富,因此也广为采用。根据使用要求和目的不同,导电填料还可制成箔片状、纤维状和多孔状等多种形式。第78页/共247页部分导电填料的电导率材料名称材料名称电导率电导率/(-1cm-1)相当于汞电导率的倍数相当于汞电导率的倍数银银6.1710559铜铜5.9210556.9金金4.1710540.1铝铝3.8210536.7锌锌1.6910516.2镍镍1.3810513.3锡锡8.771048.4铅铅4.881044.7汞汞1.041041.0铋铋9.431030.9石墨石墨11030.0

40、000950.095碳黑碳黑11020.000950.0095第79页/共247页 高分子材料一般为有机材料,而导电填料则通常为无机材料或金属。两者性质相差较大,复合时不容易紧密结合和均匀分散,影响材料的导电性,故通常还需对填料颗粒进行表面处理。如采用表面活性剂、偶联剂、氧化还原剂对填料颗粒进行处理后,分散性可大大增加。第80页/共247页 复合型导电高分子的制备工艺简单,成型加工方便,且具有较好的导电性能。例如在聚乙烯中加入粒径为10300m的导电炭黑,可使聚合物变为半导体(10-610-12-1cm-1),而将银粉、铜粉等加入环氧树脂中,其电导率可达10-110-1cm-1,接近金属的导电

41、水平。因此,在目前结构型导电高分中研究尚未达到实际应用水平时,复合型导电高分子不失为一类较为经济实用的材料。第81页/共247页 复合型导电高分子目前已得到广泛的应用。如酚醛树脂炭黑导电塑料,在电子工业中用作有机实芯电位器的导电轨和碳刷;环氧树脂银粉导电粘合剂,可用于集成电路、电子元件,PTC陶瓷发热元件等电子元件的粘结;用涤纶树脂与炭黑混合后纺丝得到的导电纤维,可用作工业防静电滤布和防电磁波服装。此外,导电涂料、导电橡胶等各类复合型导电高分子材料,都在各行各业发挥其重要作用。第82页/共247页3.2 复合型导电高分子的导电机理导电填料对导电性能的影响 实验发现,将各种金属粉末或碳黑颗粒混入

42、绝缘性的高分子材料中后,材料的导电性随导电填料浓度的变化规律大致相同。在导电填料浓度较低时,材料的电导率随浓度增加很少,而当导电填料浓度达到某一值时,电导率急剧上升,变化值可达10个数量级以上。超过这一临界值以后,电导率随浓度的变化又趋缓慢,见图516。第83页/共247页图516 电导率与导电填料的关系第84页/共247页 用电子显微镜技术观察导电材料的结构发现,当导电填料浓度较低时,填料颗粒分散在聚合物中,互相接触很少,故导电性很低。随着填料浓度增加,填料颗粒相互接触机会增多,电导率逐步上升。当填料浓度达到某一临界值时,体系内的填料颗粒相互接触形成无限网链。第85页/共247页 这个网链就

43、像金属网贯穿于聚合物中,形成导电通道,故电导率急剧上升,从而使聚合物变成了导体。显然,此时若再增加导电填料的浓度,对聚合物的导电性并不会再有更多的贡献了,故电导率变化趋于平缓。在此,电导率发生突变的导电填料浓度称为“渗滤阈值”。第86页/共247页复合型导电高分子中导电填料用量的估算 对一个聚合物来说,需耍加入多少导电填料才能形成无限网链,换句话说,渗滤阈值如何估算,这一问题具有十分重要的现实意义。哥尔兰特(Gurland)在大量研究的基础上,提出了平均接触数的概念。所谓平均接触数,是指一个导电颗粒与其他导电颗粒接触的数目。如果假定颗粒都是圆球,通过对电镜照片的分析,可得如下的公式:第87页/

44、共247页式中 m 平均接触数;Ms 单位面积中颗粒与颗粒的接触数;Ns 单位面积中的颗粒数;NAB 任意单位长度的直线上颗粒与基质(高分子材料)的接 触数;NBB上述单位长度直线上颗粒与颗粒的接触数。(523)第88页/共247页 哥尔兰特研究了酚醛树脂银粉体系电阻与填料体积分数的关系,并用式(523)计算了平均接触数m。结果表明,在m=1.31.5之间,电阻发生突变,在m=2以上时电阻保持恒定,见图517。从直观考虑,m=2是形成无限网链的条件,故似乎应该在m=2时电阻发生突变。然而实际上,小于2时就发生电阻值的突变,这表明导电填料颗粒并不需要完全接触就能形成导电通道。第89页/共247页

45、图517 电阻与银粉浓度的关系(图中数据为m值)电阻率的对数银粉体积百分数第90页/共247页 当导电颗粒间不相互接触时,颗粒间存在聚合物隔离层,使导电颗粒中自由电子的定向运动受到阻碍,这种阻碍可看作一种具有一定势能的势垒。根据量子力学的概念可知,对于一种微观粒子来说,即使其能量小于势垒的能量时,它除了有被反弹的可能性外,也有穿过势垒的可能性。微观粒子穿过势垒的现象称为贯穿效应,也称隧道效应。第91页/共247页 电子是一种微观粒子,因此,它具有穿过导电颗粒之间隔离层阻碍的可能性。这种可能性的大小与隔离层的厚度及隔离层势垒的能量0与电子能量E的差值(0E)有关。值和(0E)值愈小,电子穿过隔离

46、层的可能性就愈大。当隔离层的厚度小到一定值时,电子就能容易地穿过,使导电颗粒间的绝缘隔离层变为导电层。这种由隧道效应而产生的导电层可用一个电阻和一个电容并联来等效。第92页/共247页 根据上述分析,不难理解,导电高分子内部的结构有三种情况:(1)一部分导电颗粒完全连续的相互接触形成电流通路,相当于电流流过一只电阻。(2)一部分导电颗粒不完全连续接触,其中不相互接触的导电颗粒之间由于隧道效应而形成电通流路,相当于一个电阻与一个电容并联后再与电阻串联的情况。第93页/共247页 (3)一部分导电粒子完全不连续,导电颗粒间的聚合物隔离层较厚,是电的绝缘层,相当于电容器的效应。图518直观地反应了导

47、电高分子的这种内部结构情况。在实际应用中,为了使导电填料用量接近理论值,必须使导电颗粒充分分散。若导电颗粒分散不均匀,或在加工中发生颗粒凝聚,则即使达到临界值(渗滤阈值),无限网链也不会形成。第94页/共247页 图518 复合型导电高分子的导电机理模型 第95页/共247页3.3 含炭黑聚合物的导电性 炭黑是一种在聚合物工业中大量应用的填料。它用于聚合物中通常起四种作用:着色、补强、吸收紫外光和导电。用于着色和吸收紫外光时,炭黑浓度仅需2,用于补强时,约需20,用于消除静电时,需510,而用于制备高导电材料时,用量可高达50以上。含炭黑聚合物的导电性,主要取决于炭黑的结构、形态和浓度。第96

48、页/共247页炭黑的种类、结构与性能 炭黑是由烃类化合物经热分解而成的。以脂肪烃为主要成分的天然气和以脂肪烃与芳香烃混合物为主要成分的重油均可作为制备炭黑的原料。在热分解过程中,烃类化合物先形成碳的六元环,并进一步脱氢缩合形成多环式六角形网状结构层面。这种层面35个重叠则成为晶子,大量晶子无规则的堆砌,就形成了炭黑的球形颗粒。第97页/共247页 在制备过程中,炭黑的初级球形颗粒彼此凝聚,形成大小不等的二级链状聚集体,称为炭黑的结构。链状聚集体越多,称为结构越高。炭黑的结构因其制备方法和所用原料的不同而异。炭黑的结构高低可用吸油值大小来衡量,吸油值定义为100克炭黑可吸收的亚麻子油的量。在粒径

49、相同的情况下,吸油值越大,表示结构越高。第98页/共247页 炭黑以元素碳为主要成分,并结合少量的氢和氧,吸附少量的水分。此外还含有少量硫、焦油、灰分等杂质。炭黑中氢的含量一般为0.30.7,是由芳香族多环化合物缩合不完全剩余下的。其中一部分以烯烃或烷烃的形式结合在晶子层面末端的碳原子上,另一部分则与氧结合形成官能团存在于颗粒表面上。通常,结合在晶子层面末端碳原子上的氢愈少,炭黑的结构愈高。氢的含量愈低,炭黑的导电性愈好。第99页/共247页 炭黑中的氧是炭黑粒子与空气接触而自动氧化结合的。其中大部分以CO2的形式吸附在颗粒表面上,少部分则以羟基、羧基、羰基、醌基和内酯基的形式结合在炭黑颗粒表

50、面。一定数量含氧基团的存在,有利于炭黑在聚合物中的分散,因此对聚合物的导电性有利。炭黑的含氧量随制备方法不同而异,一般为14%。第100页/共247页 炭黑颗粒表面一般吸附有1%3的水分,其含量大小与炭黑的表面性质有关。炭黑的比表面积愈大,氧的含量愈高,则水分吸附量愈大。水分的存在虽有利于导电性能提高,但通常使电导率不稳定,故应严格控制。第101页/共247页第五章第五章 导电高分子 炭黑的生产有许多种方法,因此品种繁多,性能各异。若按生产方法分类,基本上可分为两大类:一类是接触法炭黑,包括天然气槽法炭黑、滚筒法炭黑、圆盘法炭黑、槽法混气炭黑、无槽混气炭黑等;另一类是炉法炭黑,包括气炉法炭黑、

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 管理文献 > 管理工具

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com