基于无线通信的高压设备温度监测系统的设计.pdf

上传人:ylj18****70940 文档编号:72477322 上传时间:2023-02-11 格式:PDF 页数:7 大小:499.01KB
返回 下载 相关 举报
基于无线通信的高压设备温度监测系统的设计.pdf_第1页
第1页 / 共7页
基于无线通信的高压设备温度监测系统的设计.pdf_第2页
第2页 / 共7页
点击查看更多>>
资源描述

《基于无线通信的高压设备温度监测系统的设计.pdf》由会员分享,可在线阅读,更多相关《基于无线通信的高压设备温度监测系统的设计.pdf(7页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、基于无线通信的高压设备温度监测系统的设计摘要:在对现有高压设备温度监测技术进行分析研究的基础上,研制了基于无线通信的高压设备温度监测系统。该系统的高压侧单片机通过高压侧无线发射接收模块与低压侧的无线发射接收模块进行无线双向通信,实现了高压设备的温度监测信号向低压侧传送。本文针对该系统的关键问题,重点介绍了以 PCB 板铜箔为介质的无线通信天线设计的基本方法与计算式,设计了无线发射模块的 PCB 板铜箔环形天线参数;介绍了高压侧以太阳能电池为主的专用电源的设计,该电源由处于低压侧的单片机系统控制的聚光灯为高压侧的太阳能电池提供能量,通过低功耗稳压模块输出稳定电压 3.3 V;介绍了综合性能较好的

2、温度传感器及其特性处理方式。实验室运行验证了该系统通信的可靠性。关键词:高压设备;无线通信;太阳能电池;温度监测Design of temperature monitoring system for high-voltageequipment based onDesign of temperature monitoring system for high-voltageequipment based onwireless municationwireless municationAbstractAbstract:Based on the analysis of current temperat

3、ure monitoring technologies for high-voltage equipment,thisarticle develops a system on the basis of wireless munications.In this system,the MCU on the high potential sidemunicates interactively with the low potential side by means of the wireless transceiver modules on both sides,sothat the tempera

4、ture signal of the high-voltage equipment can be sent to the low potential side.This article focuseson the following key techniques:the design of the antenna made of PCB in wireless munications;the powersource based on solar cells in the high-voltage equipment,for which energy is provided by the MCU

5、-controlledspotlight on the low potential side,which steadily produces a 3.3 V voltage through the low power voltage controlmodule;and the parameters and the processing method of a well-performed temperature sensor.The tests in la-boratory indicate the reliabilityof this system in munication.Key wor

6、dsKey words:high-voltage equipment;wireless munication;solar cell;temperature monitoring上,设计了高压设备温度在线监测系统。本文还给出了具体的模块、电路与有关参数。1 1 引言在电力系统运行中,过电流将导致电器、母线等过热;母排、触头、电缆等接头导电部分接触不良也将导致过热。设备过热又将导致绝缘损坏并产生绝缘老化甚至造成短路故障。电力系统中的大部分故障都与发热有关。因此,高压设备的温度监测关系到整个系统的可靠与安全运行。由于高电压系统的高电压、强磁场等特殊问题,常规的测温方法是不适用的。毫无疑问,保证高电压

7、设备的温度监测系统的安全、可靠与监测的准确度,该系统必须重点解决信号的提取,高压侧信号转换与发射电路的电源以及信号的可靠隔离与传输。因此,上述三个问题是高电压设备的温度监测系统设计的关键问题1-2。本文基于高压设备测温技术领域的现状,对其进行了详细的分析研究。在无线通信与太阳能电池研究的基础收稿日期:2008-10Received Date:2008-102 2 背景技术的分析研究目前,高低压侧被测信号的隔离与传输有通过采用光纤、红外辐射、红外信号空间传送、无线通信等方式3-6。光纤是很好的信号传输介质,在一般情况下具有很高的绝缘性能。但是,光纤毕竟属于有线传输介质。在梅雨季节或潮湿的气候条件

8、下,其绝缘强度将大幅度减小。因此,光纤的实际应用场合受到限制。红外辐射测温的准确度低,设备昂贵。特别是由于红外信号无法穿透障碍物,无论是红外辐射或红外信号空间传送方案的应用都将受到很大制约,而难以获得实际应用。由于无线通信技术的快速发展,采用无线通信的方式进行各种物理参数的监测也越来越引起人们的关注。毫无疑问,无线通信技术在高电压系统的重要参数如电压量、电流量、温度量等在线监测中将发挥重要作用,并具主导地位。该方案的思路是:在高压侧,单片机将监测到的温度信号通过无线收发模块传送到处于低压侧的无线收发模块,在低压测,可以就地显示温度或再通过总线(如RS485)上传至上位机(计算机)。由于高电压设

9、备的特殊性,无线通信的天线设计是必须解决的关键问题。目前,高压侧信号传感转换单元的电源主要有几种形式:电池供电;高压侧电流互感器供电;太阳能电池供电7且安装非常方便。因此,太阳能供电是优于电池供电与高压侧电流互感器供电的方案。在诸如大量运行的高压开关柜等高压设备,太阳能电池供电实际上是利用低压侧的小容量聚光灯向处于高压侧的太阳能电池提供能量。在该电源系统中还配有光源检测电路,以确保光源的正常运行。3 3 高压设备温度监测系统总体框图本系统总体硬件框图如图1所示。由于所用的nRF905为集发送、接收为一体的芯片,该系统高低压侧单片机通过高压侧无线发射接收模块、无线通信天线、低压侧无线发射接收模块

10、进行无线双向通信,不仅实现了由温度传感器感受的高压侧被测温度信号向低压侧的传送,而且低压侧的单片机可以发送各种命令要求处于高压侧的单片机执行相关命令,如根据需要改变采样间隔时间等。因此,该系统具有其独特的灵活性。低压侧的单片机还具有检测、控制小容量聚光灯的功能,并通过通信接口与上位机进行信息交换。处于高压侧的单片机由太阳能电池板供电。电池供电的主要问题是电池的使用寿命有限。当电池寿命终结时无法更换位于高电位的电池是该方案难以克服的问题。因此,一般不采用该方案。目前实际运行的电源主要是通过高压侧电流互感器从母线电流获取能量的方案。虽然这种方案的原理比较简单,但要保证在高压侧小电流时能输出满足要求

11、的电源电压,势必在额定电流时或过载时,产生太大的电压,可能在过流或短路时损坏电源甚至整个监测系统。因此,这种方案在电流较小时,无法保证监测系统的正常运行。以紧贴在高压侧信号转换与发射单元的太阳能电池为主的专用电源不仅安全可靠,而图 1 整个系统硬件框图Fig.1 Hardware block diagram4 4 信号无线传输的天线设计在小功率短距离无线通信系统中,通信的可靠性与天线密切相关,天线设计是系统设计重点之一。通常有二种天线,一种是柱形,一种是环形。处于高电压系统附近的柱形天线尖端侧的电荷特别密集,其附近空气中的电场特别强,使得空气中少量离子加速运动。这些高速运动的离子撞击空气分子,

12、便有更多的分子电离。这时空气成为导体,于是就产生了尖端放电现象。因此在在高电压系统中不能选用柱形天线。同样也不能用普通的环形天线。这里选择以 PCB 板铜箔形成的环形天线,因此要按照天线设计的要求仔细设计,否则将无法通信或通信不可靠。如图 2 所示的粗线部分为环形天线,图3 为 PCB 示意图,其等值线路(发送模式)如图 4 所示8。图 2nRF905与天线连接图Fig.2 Diagram of a loop antenna connected to nRF905RLla aRS12Pb1b2f00(3)式中:l、P、Rs、分别为天线金属导体的长度、天线的周长、天线铜表面电阻和铜的电导率。附加

13、损耗Rx按下式计算:RX2f0(LA LL)RR RL(4)Q式中:Q 为环形天线的品质因数,它主要由电容Cp的等效电阻决定。图 3 环形天线PCB 示意图Fig.3 Geometry of rectangular loop antenna made of PCB在共振的条件下,输入阻抗ZIN由下式计算:ZIN RR RL RX2f(LA LL)RR RL RX2(5)回路电感LA,回路导体电感LL计算式由式(6)、(7)计算:a aLA 20ln()0.774(6)bALL0(7)2a据以上各式计算,可得到如图5 所示的天线尺寸及相关元件参数。图 4 环形天线(发送模式)等效线路图Fig.4

14、 Loop antenna equivalent circuit(transmission mode)图 3 中 a1、a2为天线的长、宽,b1、b2为 PCB 铜箔的厚度与宽度。令a=a1a2,环形天线的面积A=a2。而矩形铜箔可用 圆 形 导 线 等 效,等 效 的 圆 形 导 线 的 半 径b=0.35b1+0.24b2图 4 中的输入阻抗ZIN由下式给出:ZI(RR RL RX)j(2f0(LA LI)(1)式中:RR,RL,RX分别为辐射电阻、损耗电阻和附加电阻(电容 CP的等效串联电阻等);LA,LL分别为环形天线的电感和回路电感。RR可以从下式得到:RR 31171(A2图 5

15、最后设计的PCB 板的环形天线Fig.5 Dimension diagram of the loop antenna通过实验表明,本文设计的以 PCB 板构成的环形天线满足设计要求,在开阔场地 100 m 的 X 围内通信可靠,)(2)4在室内可以相隔三四个控制室进行正常通信。这将为今后建立高电压系统的各种参数的在线监测网络奠定基础。c,c 为光速,f0c=3108,f0为谐振频率,这里取433 MHz。这里 A 为环形天线的面积,损耗电阻RL可按正式计算:5 太阳能电池供电电源系统设计电源是高电压温度监控器的重要部分,它的性能与可靠性甚至关系到温度监控器设计的成败。本系统采用太阳能电池供电,

16、显然,在高电压电器系统中,能直接应用太阳能的阳能电池板为处于高压侧信号转换与发射单元供电的方案。太阳能电池是一种把光能转换为电能的一种装置。根据所用材料,太阳能电池可分为硅系太阳能电池和非硅系太阳能电池,而硅系太阳能电池是目前发展最成熟的,在应用中居主导地位。在硅系太阳能电池中又分为单晶硅太阳能电池、多晶硅太阳能电池和非晶硅薄膜太阳能电池三种。情况不多,这里采用在低压侧的聚光灯射向处于高压侧的太3/7太阳能电池实际上是一个大面积的平面二极管,在光线的照射下便可产生直流电。考虑到太阳能电池的转换效率,太阳能电池的实际的等效电路如图6 所示。IL为光生电流,并联电阻 RP为电池边缘漏电或耗尽区内的

17、复合电流引起的,串联电阻 RS主要包括正面金属电极与半导体材料的接触电阻、半导体材料的体电阻和电极电阻9。图 6 太阳能电池的等效线路图Fig.6 Equivalent circuit of the solar cell由图6的等效电路图可得相应的太阳能电池的伏安特性计算公式:I Iq(U RSI)U RSIL IDexpnKT1R(8)P式中:q 为单位电荷(1.61019k(SA);K 为玻耳兹曼常数(1.381023J/K);T 是绝对温度(K);n 为二极管指数,取12。图 7 为在光照和无光照下的硅太阳能电池的输出特性曲线。从中可以看到在有光照下,电池有一个最大的输出功率PMAX,对

18、应于此功率时的电压 UMP和IMP,太阳能电池的短路电流ISC和开路电压UOC,这些都是太阳能电池的重要参数。图 7 硅太阳能电池输出特性曲线Fig.7 Output performance curve of the silicon solar cell本文选用了一种目前最为成熟且应用最广的是单晶硅太阳能电池。其主要参数如下:开路电压(Voc),5.42 V 3%短路电流(Isc),100 mA;最佳工作电压(Vm),5V3%;最佳工作电流(Im),100 mA 5%;最大功率(Ppm),0.5 W 5%;转换效率(EFF),16.5%2%。由于单片机与无线发射接收模块的工作电压均为3.3 V

19、,因此太阳能电池的输出电压经过稳压模块后直接作为系统的工作电源。nRF905 的最大工作电流为在接收状态下也仅为 12.5 mA,加上单片机系统等,整个线路消耗的电流在接收或发送状态下最大为 41 mA(实测),故所选的太阳能电池完全能满足要求。由于处于高压侧的太阳能电池的光源是受处于低压侧的作为主控单片机系统控制,因此可以在需要时接通向太阳能电池提供能源的聚光灯,并通过监测聚光灯的电流是否正常来判断高压侧的太阳能电池是否能获得足够的光源,如有故障立即报警。当不需要时可以暂时切断聚光灯的光源。这样将大大提高了整个系统的可靠性。6 温度传感电路设计由于高压侧信号转换与发射电路及其电源均处高电位,

20、单片机及测温系统所用的电源与低压系统无关,故温度传感器可经过一般的绝缘措施与处于高电压的带电体相连。与众不同的是,考虑到高压设备温度监测的动态响应、精度、安装、尺寸、成本的要求,经大量研究与长期成功应用的结果,本温度监测系统采用 NTC热敏电阻DHT0A104F作为温度信号提取的传感元件。该传感元件的一致性与互换性都非常好,测温 X 围为-40300,可选精度有1%,2%,3%等,其特性(从 0300)如图8 所示。从中可见其非线性是很严重的,但是经过简单的变换后,可以大大改善。如图9 所示,在热敏电阻下串一电阻 R1,可以改变输出特性。从图9 可以看到,增大R1 使得特性左移。R 值的选取可

21、以根据测温 X 围确定。当选取R110 k时,在10170间都有很好的测温精度。Vout直接送至单片机的 AD口进行AD采样。为了防止干扰,可以用软件滤波,如若干次后平均,或采若干次后从小到大排列,取其中间的若干个数平均。第2 种方法有较好的抗干扰能力,但编程稍复杂点。图 8DHT0A104F特性Fig.8 Characteristic diagram of DHT0A104F图 9 经过变换后的热敏电阻输出特性Fig.9 Output performance curve of the transformed NTCAD 转换的精度除了与AD 转换器有关外,还与所用的参考电压的稳定性有关。本文

22、选用的是PIC16F877A的内部 10bAD 转换器,它的AD 结果 AD 与输入电压Vo、参考电压Vref的关系为:AD=Vo1 023/Vref显然从上式看,要得到精确的AD 结果,参考电压Vref必须精确、稳定。但是,实际上一般设计的电源Vcc并不十分精确稳定,通常设计人员不得不用一精密电压基准源作为 AD 转换的参考电压Vref,以期望AD 结果精确、稳定而不受电源电压波动而波动。本设计提出将电源电压 Vcc直接作为参考电压 Vref就能保证 AD 结果稳定而不随电源电压Vcc的波动而变化的方案,可证明如下:如图 9 右边所示的电路,可得:Vo=VccR1/(Rt+R1)式中:Rt为

23、热敏电阻在被测温度下的电阻值。由于Vcc=Vref,AD=Vo1023/Vref=VccR1/(Rt+R1)1 023/Vref=R1/(Rt+R1)1 023即选用Vcc作为 Vref时,AD 的结果与电源电压无关。因此,本设计简化了传感转换电路,降低了成本,提高运行可靠性。图 10 单片机与nRF905的接线Fig.10 Connection diagram of MCU to nRF9058 8 软件设计限于篇幅,这里只介绍单片机控制nRF905 的初始化过程与发送与接收过程。nRF905 具有两种工作模式(TX 和 RX)和两种节能模式(掉电和待机),由PWR_UP、TRX_CE、TX

24、_EN三个引脚分别来控制进入不同的模式,其对应关系见表1。表 1 1 工作模式设置Table 1 Setting of nRF905 operational modesTable 1 Setting of nRF905 operational modes7 7 单片机与 nRF905nRF905 相关接线nRF905是挪威Nordic 公司推出的单片射频收发器芯片,工作电压为1.93.6 V,工作于433/868/915 MHz 3个 ISM 频道。nRF905 可以自动完成处理字头和CRC 校验的工作,可由片内硬件自动完成曼彻斯特编码/解码,同时具有功耗低、发射功率大、接收灵敏度高、通信距离

25、远等优点,具有很高的性价比。由于 nRF905 使用的是3.3 V 直流电压,故单片机也选用 3.3 V 供电的Microchip公司的PIC16F886,它是28脚封装的,具有内部10 位 AD 转换器,并有SPI 接口等。图 10 给出了 nRF905 与单片机有关的连线关系。nRF905与单片机的接口为SPI,因此与PIC16F886的通信接口很简单,通过 SPI 接口的 SDO、MISO(SDO)、SCK 三根线直接相连即可,再加上状态控制等共需8根线与之相连。PWR_UP0111TRX_CEX011TX_ENXX01工作模式掉电和 SPI 模式待机和 SPI 编程模式接收模式发送模式

26、单片机通过SPI总线配置nRF905 的内部寄存器以及读写数据和地址时必须将在待机或掉电模式下进行。8.1nRF9058.1nRF905的初始化初始化过程如图11 所示,其主要内容是把表2 中的10 个数据通过SPI 接口依次发送给nRF905。图 11nRF905初始化过程框图Fig.11 Block diagram of nRF905 initialization表 2 2 初始化配置字Table 2 Configuration words of nRF905 initializationTable 2 Configuration words of nRF905 initializatio

27、n序号1配置字说明0b01101010 工作频率 433.0MHz(433MHz 频段基准频率)5/7不自动重发数据包、正常接收模式、输出功率20b00001100+10dB(0CH)30b01000100发送与接收地址均为4 字节4N1接收有效数据宽度5N2发送有效数据宽度6nRX 地址,即本机站号,下同70 xCCRX 地址80 xCCRX 地址90 xCCRX 地址100b010110008bit CRC 校验、外接16M 晶体、无外部时钟信号8.2nRF9058.2nRF905发送与接收控制单片机控制nRF905的发送过程如图12 所示,只要将接收机的地址和要发送的数据通过SPI接口送

28、至nRF905,单片机将 TRX_CE、TX_EN 置高,nRF905 会自动生成CRC 校验码并将要发送的数据发送出去,发送完成后自动进入待机模式。图 12 单片机控制nRF905发送接收流程图Fig.12 Block diagram of nRF905 transceivingcontrolled byMCU在 TRX_CE0、TX_EN=0 时进入接收模式。如果nRF905接收到完整、正确的数据包时,nRF905会自动移去字头、地址和CRC校验码,然后将数据准备好引脚(DR)置高,单片机进入中断。读取数据时,单片机将 TRX_CE置低,进入SPI 编程模式,便可读取数据。9 9 结论本文

29、设计的以 PCB 板铜箔构成的环形天线,经长时间实际通信检验表明该天线保证了信号的可靠通信,完全适合于高压设备参数在线监测的特殊场合。所提出的通过小容量聚光灯向处于高压侧的太阳能电池供给能量而为高压侧信号传感转换单元提供电源的方案,是一种安全可靠的方案。本文采用NTC 热敏电阻作为高压系统的温度检测元件,对其进行特性变换、设计与运行说明该传感器的应用是成功的。从而改变了人们对该传感元件的评价。显然,温度测试的精度与信息的传输方式无关,只与所选用的传感器、信号调理信号与单片机的AD 转换精度有关,限于篇幅,这里不赘述14。总之,本文提出并研制的基于无线通信的高压设备温度监测系统适合于高电压系统的

30、温度量的监测,同样也适合于高电压系统各种参数的在线监测。本文研究将为今后建立高电压电力系统综合参数的大规模在线监测网络奠定基础。参考文献1MCDOUGALL T.Temperature monitoring technologyJ.World Cement,2006,37:41-44.2巩宪锋,衣红钢,王长松,等.高压开关柜隔离触头温度监测研究J.中国电机工程学报,2006,26(1):155-158.GONG X F,YI H G,WANG CH S.Research on tempera-ture monitoring of isolators in hv switchgearJ.Proc

31、eed-ings of the CSEE,2006,26(1):155-158.3SHI B ZH.An online insulation monitoring system of HVapparatus using a microputer systemC.Proceedings ofIEEESymposiumonElectricalInsulation,USA,2000:85-88.4萧宝瑾,周晓莉.电力开关柜温度监测系统中无线通信控制器的设计J.电力学报,2008,23(1):60-61.XIAO B J,ZHOU X L.The design of munication contro

32、l-ler in the real temperature monitoring system of a radiopower switch cabinetJ.Journal of Electric Power,2008,23(1):60-61.5金振东,许箴,金峰,等.国内高压带电设备测温方式综述及分析J.电力设备,2008,8(12):57-61.JIN ZH D,XU ZH,JIN F.Summary and analysis of tem-perature measurement mode for domestic hv electrifiedequipmentJ.Electrical

33、 Equipment,2008,8(12):57-61.6钱祥忠,王学雷.用于高压电器温度监测的FBG 传感系统J.电力系统及其自动化学报,2007,19(5):49-51.QIAN X ZH,WANG X L.FBG based sensing system fortemperature monitoring of the high voltage apparatusJ.Proceedings of the Chinese Society of Universities forElectric Power System and Automation,2007,19(5):49-51.7X 培

34、铭,X 泳.太阳能微功耗光纤传感式电流互感器 J.光电工程,1998,(1):33-38.ZHANG P M,ZHANG Y.An optical fiber sensing currenttransformer with a little power consumption supplied withsolar cellJ.Opto-Electronic Engineering,1998,(1):33-38.8BALANIS C A.Antenna theory analysis and design:ThirdEditionM.USA:AJohnWiley&Sons.Inc.,2005:2

35、37-242.9吴丹丹.光伏系统运行状态检测与数据分析技术研究D.:工业大学,2007:13-19.WU D D.Study on running status of photovoltaic cell sys-tem and it s analysis technologyD.Beijing:BeijingUni-versity of Technology,2007:13-19.10 TERHOUSERB W,KOKTOFF D M.Design and perfor-mance of small printed antennasJ.IEEE Trans.Antennasand Propag

36、ation,1998,46(11):1629-1633.11 FARON D.Introducing loop antennas for short range radi-osJ.Microwave&RF,2002:80-88.12 SHI B ZH.An investigation on the influencing factors ononline insulation monitoring of HV apparatusC.Pro-ceedings ofIEEE Symposium on Electrical Insulation.Anaheim,USA,2000:81-83.13 李

37、泰军.开关柜母线温度的在线监测J.高压电器,2001,37(3):61-63.LI T J.On-line montoring the bus bar s temperature in-side a switchgear cubicleJ.High Voltage Apparatus,2001,37(3):61-63.14 江和,X 培铭,陈津.智能型温度保护器的研究J.低压电器,2000,27(5):29-30.JIANG H,ZHANG P M,CHEN J.Study on intelligenttemperature protectorJ.S&MElectricMachines,2000,27(5):29-30.作者简介江和,硕士,XX 大学副教授,硕士生导师,主要从事智能电器与电器在线监测技术研究。:jianghe706fzu.edu.Jiang He,master degree,associate professor and master tutorin FuzhouUniversity;his main research direction is intelligentapparatus and electric apparatus inline monitoring.7/7

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com