(精品)数字信号处理第三版西安科大出版高西全丁玉美课后答案第3和4章.ppt

上传人:s****8 文档编号:69842833 上传时间:2023-01-09 格式:PPT 页数:157 大小:2.63MB
返回 下载 相关 举报
(精品)数字信号处理第三版西安科大出版高西全丁玉美课后答案第3和4章.ppt_第1页
第1页 / 共157页
(精品)数字信号处理第三版西安科大出版高西全丁玉美课后答案第3和4章.ppt_第2页
第2页 / 共157页
点击查看更多>>
资源描述

《(精品)数字信号处理第三版西安科大出版高西全丁玉美课后答案第3和4章.ppt》由会员分享,可在线阅读,更多相关《(精品)数字信号处理第三版西安科大出版高西全丁玉美课后答案第3和4章.ppt(157页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、离散傅里叶变换(DFT)及其快速算法(FFT)第章第3章离散傅里叶变换(DFT)及其快速算法(FFT)3.1学习要点与重要公式学习要点与重要公式3.2频率域采样频率域采样3.3循环卷积和线性卷积的快速计算以及信号的频谱分析循环卷积和线性卷积的快速计算以及信号的频谱分析3.4例题例题3.5教材第教材第3章习题与上机题解答章习题与上机题解答3.6教材第教材第4章习题与上机题解答章习题与上机题解答离散傅里叶变换(DFT)及其快速算法(FFT)第章 3.1 学习要点与重要公式学习要点与重要公式3.1.1 学习要点学习要点 (1)DFT的定义和物理意义,DFT和FT、ZT之间的关系;(2)DFT的重要性

2、质和定理:隐含周期性、循环移位性质、共轭对称性、实序列DFT的特点、循环卷积定理、离散巴塞伐尔定理;(3)频率域采样定理;(4)FFT的基本原理及其应用。离散傅里叶变换(DFT)及其快速算法(FFT)第章3.1.2 重要公式重要公式1)定义k=0,1,N1k=0,1,N12)隐含周期性离散傅里叶变换(DFT)及其快速算法(FFT)第章3)线性性质若,则4)时域循环移位性质5)频域循环移位性质离散傅里叶变换(DFT)及其快速算法(FFT)第章6)循环卷积定理 循环卷积:L x(n)循环卷积的矩阵表示:离散傅里叶变换(DFT)及其快速算法(FFT)第章 循环卷积定理:若yc(n)=h(n)L x(

3、n)则 Yc(k)=DFTyc(n)L=H(k)X(k)k=0,1,2,L1其中 H(k)=DFTh(n)L,X(k)=DFTx(n)L6)离散巴塞伐尔定理离散傅里叶变换(DFT)及其快速算法(FFT)第章7)共轭对称性质(1)长度为N的共轭对称序列xep(n)与反共轭对称序列xop(n):序列x(n)的共轭对称分量与共轭反对称分量:离散傅里叶变换(DFT)及其快速算法(FFT)第章(2)如果x(n)=xr(n)+jxi(n)且X(k)=Xep(k)+Xop(k)则Xep(k)=DFTxr(n),Xop(k)=DFTjxi(n)(3)如果x(n)=xep(n)+xop(n)且X(k)=Xr(k

4、)+jXi(k)则Xr(k)=DFTxep(n),jXi(k)=DFTxop(n)(4)实序列DFT及FT的特点:假设x(n)是实序列,X(k)=DFTx(n),则X(k)=X*(Nk)|X(k)|=|X(Nk)|,(k)=(Nk)离散傅里叶变换(DFT)及其快速算法(FFT)第章 3.2 频频 率率 域域 采采 样样我们知道,时域采样和频域采样各有相应的采样定理。频域采样定理包含以下内容:(1)设 x(n)是任意序列,X(ej)=FTx(n),对X(ej)等间隔采样得到k=0,1,2,3,N1 则离散傅里叶变换(DFT)及其快速算法(FFT)第章(2)如果x(n)的长度为M,只有当频域采样点

5、数NM时,xN(n)=x(n),否则会发生时域混叠,xN(n)x(n)。通过频率域采样得到频域离散序列xN(k),再对xN(k)进行IDFT得到的序列xN(n)应是原序列x(n)以采样点数N为周期进行周期化后的主值区序列,这一概念非常重要。离散傅里叶变换(DFT)及其快速算法(FFT)第章(3)如果在频率域采样的点数满足频率域采样定理,即采样点数N大于等于序列的长度M,则可以用频率采样得到的离散函数X(k)恢复原序列的Z变换X(z),公式为式中 上面第一式称为z域内插公式,第二式称为内插函数。离散傅里叶变换(DFT)及其快速算法(FFT)第章3.3 循环卷积和线性卷积的快速计算循环卷积和线性卷

6、积的快速计算 以及信号的频谱分析以及信号的频谱分析3.3.1 循环卷积的快速计算循环卷积的快速计算如果两个序列的长度均不很长,可以直接采用循环卷积的矩阵乘法计算其循环卷积;如果序列较长,可以采用快速算法。快速算法的理论基础是循环卷积定理。设h(n)的长度为N,x(n)的长度为M,计算yc(n)=h(n)L x(n)的快速算法如下:离散傅里叶变换(DFT)及其快速算法(FFT)第章 (1)计算 k=0,1,2,3,,L1,L=maxN,M(2)计算 Yc(k)=H(k)X(k)k=0,1,2,L1(3)计算 yc(n)=IDFTYc(k)L n=0,1,2,L1说明:如上计算过程中的DFT和ID

7、FT均采用FFT算法时,才称为快速算法,否则比直接在时域计算循环卷积的运算量大3倍以上。离散傅里叶变换(DFT)及其快速算法(FFT)第章3.3.2 线性卷积的快速计算线性卷积的快速计算快速卷积法快速卷积法 序列h(n)和x(n)的长度分别为N和M,L=N+M1,求y(n)=h(n)*x(n)的方法如下:(1)在h(n)的尾部加LN个零点,在x(n)的尾部加LM个零点;(2)计算L点的H(k)=FFTh(n)和L点的X(k)=FFTx(n);(3)计算Y(k)=H(k)X(k);(4)计算Y(n)=IFFTY(k),n=0,1,2,3,L-1。但当h(n)和x(n)中任一个的长度很长或者无限长

8、时,需用书上介绍的重叠相加法和重叠保留法。离散傅里叶变换(DFT)及其快速算法(FFT)第章3.3.3 用用DFT/FFT进行频谱分析进行频谱分析对序列进行N点的DFT/FFT就是对序列频域的N点离散采样,采样点的频率为k=2k/N,k=0,1,2,N1。对信号进行频谱分析要关心三个问题:频谱分辨率、频谱分析范围和分析误差。DFT的分辨率指的是频域采样间隔2/N,用DFT/FFT进行频谱分析时,在相邻采点之间的频谱是不知道的,因此频率分辨率是一个重要指标,希望分辨率高,即2/N要小,DFT的变换区间N要大。离散傅里叶变换(DFT)及其快速算法(FFT)第章当然,截取信号的长度要足够长。但如果截

9、取的长度不够长,而依靠在所截取的序列尾部加零点,增加变换区间长度,也不会提高分辨率。例如,分析周期序列的频谱,只观察了一个周期的1/4长度,用这些数据进行DFT,再通过尾部增加零点,加大DFT的变换区间N,也不能分辨出是周期序列,更不能得到周期序列的精确频率。用DFT/FFT对序列进行频谱分析,频谱分析范围为;用DFT/FFT对模拟信号进行频谱分析,频谱分析范围为采样频率的一半,即0.5Fs。用DFT/FFT对信号进行谱分析的误差表现在三个方面,即混叠现象、栅栏效应和截断效应。截断效应包括泄漏和谱间干扰。离散傅里叶变换(DFT)及其快速算法(FFT)第章 3.4 例例 题题例例3.4.1 设x

10、(n)为存在傅里叶变换的任意序列,其Z变换为X(z),X(k)是对X(z)在单位圆上的N点等间隔采样,即求X(k)的N点离散傅里叶逆变换(记为xN(n))与x(n)的关系式。解解:由题意知离散傅里叶变换(DFT)及其快速算法(FFT)第章即X(k)是对X(ej)在0,2上的N点等间隔采样。由于X(ej)是以2为周期的,所以采样序列即以N为周期。所以它必然与一周期序列相对应,为的DFS系数。离散傅里叶变换(DFT)及其快速算法(FFT)第章为了导出与x(n)之间的关系,应将上式中的用x(n)表示:所以离散傅里叶变换(DFT)及其快速算法(FFT)第章因为所以即是x(n)的周期延拓序列,由DFT与

11、DFS的关系可得出离散傅里叶变换(DFT)及其快速算法(FFT)第章xN(n)=IDFTX(k)为x(n)的周期延拓序列(以N为延拓周期)的主值序列。以后这一结论可以直接引用。例例3.4.2 已知x(n)=R8(n),X(ej)=FTx(n)对X(ej)采样得到X(k),求离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:直接根据频域采样概念得到例例3.4.3 令X(k)表示x(n)的N点DFT,分别证明:(1)如果x(n)满足关系式x(n)=x(N1n)则X(0)=0 (2)当N为偶数时,如果x(n)=x(N1n)则离散傅里叶变换(DFT)及其快速算法(FFT)第章证 (1)直接按DF

12、T定义即可得证。因为所以 令n=N1m,则式+式得离散傅里叶变换(DFT)及其快速算法(FFT)第章所以X(0)=0 (2)因为x(n)=x(N1n),所以令m=N1n,则上式可写成离散傅里叶变换(DFT)及其快速算法(FFT)第章当时(N为偶数),因为所以因此证得离散傅里叶变换(DFT)及其快速算法(FFT)第章例例3.4.4有限时宽序列的N点离散傅里叶变换相当于其Z变换在单位圆上的N点等间隔采样。我们希望求出X(z)在半径为r的圆上的N点等间隔采样,即试给出一种用DFT计算得到的算法。解解:因为 离散傅里叶变换(DFT)及其快速算法(FFT)第章所以由此可见,先对x(n)乘以指数序列rn,

13、然后再进行N点DFT,即可得到题中所要求的复频域采样。离散傅里叶变换(DFT)及其快速算法(FFT)第章例例3.4.5 长度为N的一个有限长序列x(n)的N点DFT为X(k)。另一个长度为2N的序列y(n)定义为试用X(k)表示y(n)的2N点离散傅里叶变换Y(k)。解解:该题可以直接按DFT定义求解。离散傅里叶变换(DFT)及其快速算法(FFT)第章上面最后一步采用的是X(k)以N为周期的概念。离散傅里叶变换(DFT)及其快速算法(FFT)第章例例3.4.6 用DFT对模拟信号进行谱分析,设模拟信号xa(t)的最高频率为200 Hz,以奈奎斯特频率采样得到时域离散序列x(n)=xa(nT),

14、要求频率分辨率为10 Hz。假设模拟信号频谱Xa(j)如图3.4.1所示,试画出X(ej)=FTx(n)和X(k)=DFTx(n)的谱线图,并标出每个k值对应的数字频率k和模拟频率fk的取值。离散傅里叶变换(DFT)及其快速算法(FFT)第章图3.4.1离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:因为最高频率fmax=200 Hz,频率分辨率F=10 Hz,所以采样频率fs为观察时间采样点数N=Tfs=0.1400=40个所以,对xa(t)进行采样得x(n)=xa(nT)n=0,1,39离散傅里叶变换(DFT)及其快速算法(FFT)第章Xa(jf)、X(ej)及X(k)N分别如图3

15、.4.2(a)、(b)、(c)所示。离散傅里叶变换(DFT)及其快速算法(FFT)第章图3.4.2离散傅里叶变换(DFT)及其快速算法(FFT)第章当fs=2fmax时,f=fmax 对应,由 可求得 ;当fs2fmax时,fmax对应的数字频率=2fmaxT。Xa(if)与X(k)的对应关系(由图3.4.2(a)、(c)可看出)为离散傅里叶变换(DFT)及其快速算法(FFT)第章该例题主要说明了模拟信号xa(t)的时域采样序列x(n)的N点离散傅里叶变换X(k)与xa(t)的频谱Xa(jf)之间的对应关系。只有搞清该关系,才能由X(k)看出Xa(jf)的频谱特征。否则,即使计算出X(k),也

16、搞不清X(k)的第k条谱线对应于Xa(jf)的哪个频率点的采样,这样就达不到谱分析的目的。实际中,X(k)求出后,也可以将横坐标换算成模拟频率,换算公式为fk=kF=k/(NT)。直接作Xa(kF)=Xa(fk)=TX(k)谱线图。离散傅里叶变换(DFT)及其快速算法(FFT)第章例例3.4.7 已知x(n)长度为N,X(z)=ZTx(n)。要求计算X(z)在单位圆上的M个等间隔采样。假定MN,试设计一种计算M个采样值的方法,它只需计算一次M点DFT。解解:这是一个典型的频域采样理论应用问题。根据频域采样、时域周期延拓以及DFT的惟一性概念,容易解答该题。由频域采样理论知道,如果即X(k)是X

17、(z)在单位圆上的M点等间隔采样,则离散傅里叶变换(DFT)及其快速算法(FFT)第章当然即首先将x(n)以M为周期进行周期延拓,取主值区序列xM(n),最后进行M点DFT则可得到应当注意,MN,所以周期延拓x(n)时,有重叠区,xM(n)在重叠区上的值等于重叠在n点处的所有序列值相加。离散傅里叶变换(DFT)及其快速算法(FFT)第章显然,由于频域采样点数MN,不满足频域采样定理,所以,不能由X(k)恢复x(n),即丢失了x(n)的频谱信息。例例3.4.8 已知序列x(n)=1,2,2,1,h(n)=3,2,1,1 (1)计算5点循环卷积y5(n)=x(n)L h(n);(2)用计算循环卷积

18、的方法计算线性卷积y(n)=x(n)*h(n)。解:(1)这里是2个短序列的循环卷积计算,可以用矩阵相乘的方法(即用教材第82页式(3.2.7))计算,也可以用类似于线性卷积的列表法。因为要求5点循环卷积,因此每个序列尾部加一个零值点,按照教材式(3.2.7)写出离散傅里叶变换(DFT)及其快速算法(FFT)第章得到y5(n)=4,9,9,6,2。注意上面矩阵方程右边第一个55矩阵称为x(n)的循环矩阵,它的第一行是x(n)的5点循环倒相,第二行是第一行的向右循环移一位,第三行是第二行向右循环移一位,依次类推。离散傅里叶变换(DFT)及其快速算法(FFT)第章用列表法可以省去写矩阵方程,下面用

19、列表法解:离散傅里叶变换(DFT)及其快速算法(FFT)第章表中的第一行是h(n)序列,第2、3、4、5、6行的前五列即是x(n)的循环矩阵的对应行。同样得到y5(n)=,9,9,6,2。(2)我们知道只有当循环卷积的长度大于等于线性卷积结果的长度时,循环卷积的结果才能等于线性卷积的结果。该题目中线性卷积的长度为L4+41=7,因此循环卷积的长度可选L=7,这样两个序列的尾部分别加3个零点后,进行7点循环卷积,其结果就是线性卷积的结果。即离散傅里叶变换(DFT)及其快速算法(FFT)第章得到y(n)=x(n)*h(n)=3,8,9,6,2,1,1离散傅里叶变换(DFT)及其快速算法(FFT)第

20、章例例3.4.9已知实序列x(n)和y(n)的DFT分别为X(k)和Y(k),试给出一种计算一次IDFT就可得出x(n)和y(n)的计算方法。(选自2004年北京交通大学硕士研究生入学试题。)解解:令 w(n)=x(n)+jy(n)对其进行DFT,得到W(k)=X(k)+jY(k)w(n)=IDFTW(k)因为x(n)和y(n)分别为实序列,因此x(n)=Rew(n)y(n)=Imw(n)离散傅里叶变换(DFT)及其快速算法(FFT)第章例3.4.10已知x(n)(n=0,1,2,1023),h(n)(n=0,1,2,15)。在进行线性卷积时,每次只能进行16点线性卷积运算。试问为了得到y(n

21、)=x(n)*h(n)的正确结果,原始数据应作怎样处理,并如何进行运算。(选自1996年西安电子科技大学硕士研究生入学试题。)解解:将x(n)进行分组后,采用书上介绍的重叠相加法。x(n)的长度为1024点,按照16分组,共分64组,记为xi(n),i=0,1,2,63。即离散傅里叶变换(DFT)及其快速算法(FFT)第章式中,yi(n)=xi(n)*h(n),i=0,1,2,63。可以用FFT计算16点的线性卷积yi(n)。最后结果y(n)的长度为1024+1611039。例例3.4.11 x(n)是一个长度M=142的信号序列,即:x(n)=0,当n0或nM时。现希望用N100的DFT来分

22、析频谱。试问:如何通过一次N=100的DFT求得,k=0,1,2,99;这样进行频谱分析是否存在误差?离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:通过频率域采样得到频域离散函数,再对其进行IDFT得到的序列应是原序列x(n)以N为周期进行周期化后的主值序列。按照这一概念,在频域02采样100点,那么相应的时域应以100为周期进行延拓后截取主值区。该题要求用一次100点的DFT求得,可以用下式计算:式中,k对应的频率为。这样进行频谱分析存在误差,误差是因为时域混叠引起的。离散傅里叶变换(DFT)及其快速算法(FFT)第章3.5 教材第教材第3章习题与上机题解答章习题与上机题解答 1

23、计算以下序列的N点DFT,在变换区间0nN1内,序列定义为(1)x(n)=1(2)x(n)=(n)(3)x(n)=(nn0)0n0N(4)x(n)=Rm(n)0mN (5)(6)离散傅里叶变换(DFT)及其快速算法(FFT)第章(7)x(n)=ej0nRN(n)(8)x(n)=sin(0n)RN(n)(9)x(n)=cos(0n)RN(N)(10)x(n)=nRN(n)解解:(1)离散傅里叶变换(DFT)及其快速算法(FFT)第章(2)(3)(4)离散傅里叶变换(DFT)及其快速算法(FFT)第章(5)0kN1离散傅里叶变换(DFT)及其快速算法(FFT)第章(6)离散傅里叶变换(DFT)及其

24、快速算法(FFT)第章0kN1(7)离散傅里叶变换(DFT)及其快速算法(FFT)第章或(8)解法一 直接计算:离散傅里叶变换(DFT)及其快速算法(FFT)第章解法二解法二 由DFT的共轭对称性求解。因为所以所以离散傅里叶变换(DFT)及其快速算法(FFT)第章即结果与解法一所得结果相同。此题验证了共轭对称性。(9)解法一 直接计算:离散傅里叶变换(DFT)及其快速算法(FFT)第章解法二解法二 由DFT共轭对称性可得同样结果。因为离散傅里叶变换(DFT)及其快速算法(FFT)第章(10)解法一上式直接计算较难,可根据循环移位性质来求解X(k)。因为x(n)=nRN(n),所以 x(n)x(

25、n1)NRN(n)+N(n)=RN(n)等式两边进行DFT,得到 X(k)X(k)WkN+N=N(k)离散傅里叶变换(DFT)及其快速算法(FFT)第章故当k=0时,可直接计算得出X(0)为这样,X(k)可写成如下形式:离散傅里叶变换(DFT)及其快速算法(FFT)第章 解法二 k=0时,k0时,离散傅里叶变换(DFT)及其快速算法(FFT)第章所以,即 2 已知下列X(k),求x(n)=IDFTX(k)(1)离散傅里叶变换(DFT)及其快速算法(FFT)第章(2)其中,m为正整数,0mN/2,N为变换区间长度。离散傅里叶变换(DFT)及其快速算法(FFT)第章解:(1)n=0,1,N1离散傅

26、里叶变换(DFT)及其快速算法(FFT)第章(2)n=0,1,N1离散傅里叶变换(DFT)及其快速算法(FFT)第章3 已知长度为N=10的两个有限长序列:做图表示x1(n)、x2(n)和y(n)=x1(n)*x2(n),循环卷积区间长度L=10。解解:x1(n)、x2(n)和y(n)=x1(n)*x2(n)分别如题3解图(a)、(b)、(c)所示。离散傅里叶变换(DFT)及其快速算法(FFT)第章题3解图离散傅里叶变换(DFT)及其快速算法(FFT)第章4 证明DFT的对称定理,即假设X(k)=DFTx(n),证明DFTX(n)=Nx(Nk)证:因为所以离散傅里叶变换(DFT)及其快速算法(

27、FFT)第章由于所以 DFTX(n)=Nx(Nk)k=0,1,N1 5 如果X(k)=DFTx(n),证明DFT的初值定理证:由IDFT定义式离散傅里叶变换(DFT)及其快速算法(FFT)第章可知6 设x(n)的长度为N,且X(k)=DFTx(n)0kN1令h(n)=x(n)NRmN(n)m为自然数H(k)=DFTh(n)mN 0kmN1求H(k)与X(k)的关系式。解:H(k)=DFTh(n)0kmN1令n=n+lN,l=0,1,m1,n=0,1,N1,则离散傅里叶变换(DFT)及其快速算法(FFT)第章因为 离散傅里叶变换(DFT)及其快速算法(FFT)第章所以7 证明:若x(n)为实序列

28、,X(k)=DFTx(n)N,则X(k)为共轭对称序列,即X(k)=X*(Nk);若x(n)实偶对称,即x(n)=x(Nn),则X(k)也实偶对称;若x(n)实奇对称,即x(n)=x(Nn),则X(k)为纯虚函数并奇对称。离散傅里叶变换(DFT)及其快速算法(FFT)第章证:(1)由教材(3.2.17)(3.2.20)式知道,如果将x(n)表示为x(n)=xr(n)+jxi(n)则X(k)=DFTx(n)=Xep(k)+Xop(k)其中,Xep(k)=DFTxr(n),是X(k)的共轭对称分量;Xop(k)=DFTjxi(n),是X(k)的共轭反对称分量。所以,如果x(n)为实序列,则Xop(

29、k)=DFTjxi(n)=0,故X(k)=DFTx(n)=Xep(k),即X(k)=X*(Nk)。离散傅里叶变换(DFT)及其快速算法(FFT)第章(2)由DFT的共轭对称性可知,如果 x(n)=xep(n)+xop(n)且X(k)=ReX(k)+j ImX(k)则ReX(k)=DFTxep(n),j ImX(k)=DFTxop(n)所以,当x(n)=x(Nn)时,等价于上式中xop(n)=0,x(n)中只有xep(n)成分,所以X(k)只有实部,即X(k)为实函数。又由(1)证明结果知道,实序列的DFT必然为共轭对称函数,即X(k)=X*(Nk)=X(Nk),所以X(k)实偶对称。离散傅里叶

30、变换(DFT)及其快速算法(FFT)第章同理,当x(n)=x(Nn)时,等价于x(n)只有xop(n)成分(即xep(n)=0),故X(k)只有纯虚部,且由于x(n)为实序列,即X(k)共轭对称,X(k)=X*(Nk)=X(Nk),为纯虚奇函数。8 证明频域循环移位性质:设X(k)=DFTx(n),Y(k)=DFTy(n),如果Y(k)=X(k+l)NRN(k),则离散傅里叶变换(DFT)及其快速算法(FFT)第章 证:离散傅里叶变换(DFT)及其快速算法(FFT)第章令m=k+l,则 9 已知x(n)长度为N,X(k)=DFTx(n),离散傅里叶变换(DFT)及其快速算法(FFT)第章求Y(

31、k)与X(k)的关系式。解:离散傅里叶变换(DFT)及其快速算法(FFT)第章10 证明离散相关定理。若X(k)=X1*(k)2(k)则 证:根据DFT的惟一性,只要证明即可。离散傅里叶变换(DFT)及其快速算法(FFT)第章离散傅里叶变换(DFT)及其快速算法(FFT)第章令m=l+n,则所以 离散傅里叶变换(DFT)及其快速算法(FFT)第章当然也可以直接计算X(k)=X1*(k)X2(k)的IDFT。0nN1离散傅里叶变换(DFT)及其快速算法(FFT)第章由于0nN1所以离散傅里叶变换(DFT)及其快速算法(FFT)第章11 证明离散帕塞瓦尔定理。若X(k)=DFTx(n),则证:离散

32、傅里叶变换(DFT)及其快速算法(FFT)第章12 已知f(n)=x(n)+jy(n),x(n)与y(n)均为长度为N的实序列。设F(k)=DFTf(n)N 0kN1(1)(2)F(k)=1+jN试求X(k)=DFTx(n)N,Y(k)=DFTy(n)N以及x(n)和y(n)。解解:由DFT的共轭对称性可知x(n)X(k)=Fep(k)jy(n)jY(k)=Fop(k)离散傅里叶变换(DFT)及其快速算法(FFT)第章 方法一 (1)离散傅里叶变换(DFT)及其快速算法(FFT)第章0nN1由于0n,mN1离散傅里叶变换(DFT)及其快速算法(FFT)第章所以 x(n)=an 0nN1同理 y

33、(n)=bn 0nN1 (2)F(k)=1+jN,离散傅里叶变换(DFT)及其快速算法(FFT)第章方法二 令只要证明A(k)为共轭对称的,B(k)为共轭反对称,则就会有 A(k)=Fep(k)=X(k),B(k)=Fop(k)=jY(k)因为,共轭对称离散傅里叶变换(DFT)及其快速算法(FFT)第章,共轭反对称 所以离散傅里叶变换(DFT)及其快速算法(FFT)第章由方法一知 x(n)=IDFTX(k)=anRN(n)y(n)=IDFTY(k)=bnRN(n)13 已知序列x(n)=anu(n),0a1,对x(n)的Z变换X(z)在单位圆上等间隔采样N点,采样序列为求有限长序列IDFTX(

34、k)N。解解:我们知道,,是以2为周期的周期函数,所以离散傅里叶变换(DFT)及其快速算法(FFT)第章以N为周期,将看作一周期序列的DFS系数,则由式知为离散傅里叶变换(DFT)及其快速算法(FFT)第章将式代入式得到由于 所以离散傅里叶变换(DFT)及其快速算法(FFT)第章由题意知 所以根据有关X(k)与xN(n)的周期延拓序列的DFS系数的关系有离散傅里叶变换(DFT)及其快速算法(FFT)第章由于0nN1,所以因此说明:平时解题时,本题推导离散傅里叶变换(DFT)及其快速算法(FFT)第章的过程可省去,直接引用频域采样理论给出的结论(教材中式(3.3.2)和(3.3.3))即可。14

35、 两个有限长序列x(n)和y(n)的零值区间为x(n)=0 n0,8ny(n)=0 n0,20n对每个序列作20点DFT,即X(k)=DFTx(n)k=0,1,19Y(k)=DFTy(n)k=0,1,19试问在哪些点上f(n)与x(n)*y(n)值相等,为什么?离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:如前所述,记fl(n)=x(n)*y(n),而f(n)=IDFTF(k)=x(n)20 y(n)。fl(n)长度为27,f(n)长度为20。由教材中式(3.4.3)知道f(n)与fl(n)的关系为只有在如上周期延拓序列中无混叠的点上,才满足f(n)=fl(n),所以 f(n)=fl

36、(n)=x(n)*y(n)7n19离散傅里叶变换(DFT)及其快速算法(FFT)第章15 已知实序列x(n)的8点DFT的前5个值为0.25,0.125-j0.3018,0,0.125-j0.0518,0。(1)求X(k)的其余3点的值;(2)求X1(k)=DFTx1(n)8;(3),求。离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:(1)因为x(n)是实序列,由第7题证明结果有X(k)=X*(Nk),即X(Nk)=X*(k),所以,X(k)的其余3点值为X(5),X(6),X(7)=0.125+j0.0518,0,0.125+j0.3018 (2)根据DFT的时域循环移位性质,(3

37、)离散傅里叶变换(DFT)及其快速算法(FFT)第章16 x(n)、x1(n)和x2(n)分别如题16图(a)、(b)和(c)所示,已知X(k)=DFTx(n)8。求和注:用X(k)表示X1(k)和X2(k)。解解:因为x1(n)=x(n+3)8R8(n),x2(n)=x(n2)8R8(n),所以根据DFT的时域循环移位性质得到离散傅里叶变换(DFT)及其快速算法(FFT)第章17 设x(n)是长度为N的因果序列,且试确定Y(k)与X(ej)的关系式。离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:y(n)是x(n)以M为周期的周期延拓序列的主值序列,根据频域采样理论得到18 用微处理

38、机对实数序列作谱分析,要求谱分辨率F50 Hz,信号最高频率为 1 kHz,试确定以下各参数:(1)最小记录时间Tp min;(2)最大取样间隔Tmax;(3)最少采样点数Nmin;(4)在频带宽度不变的情况下,使频率分辨率提高1倍(即F缩小一半)的N值。离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:(1)已知F=50 Hz,因而(2)(3)离散傅里叶变换(DFT)及其快速算法(FFT)第章(4)频带宽度不变就意味着采样间隔T不变,应该使记录时间扩大1倍,即为0.04 s,实现频率分辨率提高1倍(F变为原来的1/2)。19 已知调幅信号的载波频率fc=1 kHz,调制信号频率fm=1

39、00 Hz,用FFT对其进行谱分析,试求:(1)最小记录时间Tp min;(2)最低采样频率fs min;(3)最少采样点数Nmin。离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:调制信号为单一频率正弦波时,已调AM信号为x(t)=cos(2fct+jc)1+cos(2fmt+jm)所以,已调AM信号x(t)只有3个频率:fc、fc+fm、fcfm。x(t)的最高频率fmax=1.1 kHz,频率分辨率F100 Hz(对本题所给单频AM调制信号应满足100/F=整数,以便能采样到这三个频率成分)。故(1)(2)离散傅里叶变换(DFT)及其快速算法(FFT)第章(3)(注意,对窄带已调

40、信号可以采用亚奈奎斯特采样速率采样,压缩码率。而在本题的解答中,我们仅按基带信号的采样定理来求解。)20 在下列说法中选择正确的结论。线性调频Z变换可以用来计算一个有限长序列h(n)在z平面实轴上诸点zk的Z变换H(zk),使离散傅里叶变换(DFT)及其快速算法(FFT)第章 (1)zk=ak,k=0,1,N1,a为实数,a1;(2)zk=ak,k=0,1,N1,a为实数,a1;(3)(1)和(2)都不行,即线性调频Z变换不能计算H(z)在z平面实轴上的取样值。解解:在chirp-Z变换中,在z平面上分析的N点为zk=AWk k=0,1,N1其中所以当A0=1,0=0,W0=a1,j=0时,z

41、k=ak故说法(1)正确,说法(2)、(3)不正确。离散傅里叶变换(DFT)及其快速算法(FFT)第章 21 我们希望利用h(n)长度为N=50的FIR滤波器对一段很长的数据序列进行滤波处理,要求采用重叠保留法通过DFT(即FFT)来实现。所谓重叠保留法,就是对输入序列进行分段(本题设每段长度为M=100个采样点),但相邻两段必须重叠V个点,然后计算各段与h(n)的L点(本题取L=128)循环卷积,得到输出序列ym(n),m表示第m段循环卷积计算输出。最后,从ym(n)中选取B个样值,使每段选取的B个样值连接得到滤波输出y(n)。离散傅里叶变换(DFT)及其快速算法(FFT)第章(1)求V;(

42、2)求B;(3)确定取出的B个采样应为ym(n)中的哪些样点。解解:为了便于叙述,规定循环卷积的输出序列ym(n)的序列标号为n=0,1,2,127。先以h(n)与各段输入的线性卷积ylm(n)分析问题,因为当h(n)的50个样值点完全与第m段输入序列xm(n)重叠后,ylm(n)才与真正的滤波输出y(n)相等,所以,ylm(n)中第0点到第48点(共49个点)不正确,不能作为滤波输出,第49点到第99点(共51个点)为正确的滤波输出序列y(n)的第m段,即B=51。离散傅里叶变换(DFT)及其快速算法(FFT)第章所以,为了去除前面49个不正确点,取出51个正确的点连接,得到不间断又无多余点

43、的y(n),必须重叠10051=49个点,即V=49。下面说明,对128点的循环卷积ym(n),上述结果也是正确的。我们知道因为ylm(n)长度为N+M1=50+1001=149离散傅里叶变换(DFT)及其快速算法(FFT)第章所以n从21到127区域无时域混叠,ym(n)=ylm(n),当然,第49点到第99点二者亦相等,所以,所取出的51点为从第49点到第99点的ym(n)。综上所述,总结所得结论:V=49,B=51 选取ym(n)中第4999点作为滤波输出。读者可以通过作图来理解重叠保留法的原理和本题的解答。离散傅里叶变换(DFT)及其快速算法(FFT)第章22 证明DFT的频域循环卷积

44、定理。证证:DFT的频域循环卷积定理重写如下:设h(n)和x(n)的长度分别为N和M,ym(n)=h(n)x(n)H(k)=DFTh(n)L,X(k)=DFTX(n)L则L X(k)其中,LmaxN,M。离散傅里叶变换(DFT)及其快速算法(FFT)第章根据DFT的惟一性,只要证明ym(n)=IDFTYm(k)=h(n)x(n),就证明了DFT的频域循环卷积定理。离散傅里叶变换(DFT)及其快速算法(FFT)第章23*已知序列x(n)=1,2,3,3,2,1。(1)求出x(n)的傅里叶变换X(ej),画出幅频特性和相频特性曲线(提示:用1024点FFT近似X(ej);(2)计算x(n)的N(N

45、6)点离散傅里叶变换X(k),画出幅频特性和相频特性曲线;(3)将X(ej)和X(k)的幅频特性和相频特性曲线分别画在同一幅图中,验证X(k)是X(ej)的等间隔采样,采样间隔为2/N;(4)计算X(k)的N点IDFT,验证DFT和IDFT的惟一性。离散傅里叶变换(DFT)及其快速算法(FFT)第章解解:该题求解程序为ex323.m,程序运行结果如题23*解图所示。第(1)小题用1024点DFT近似x(n)的傅里叶变换;第(2)小题用32点DFT。题23*解图(e)和(f)验证了X(k)是X(ej)的等间隔采样,采样间隔为2/N。题23*解图(g)验证了IDFT的惟一性。离散傅里叶变换(DFT

46、)及其快速算法(FFT)第章题23*解图离散傅里叶变换(DFT)及其快速算法(FFT)第章24*给定两个序列:x1(n)=2,1,1,2,x2(n)=1,1,1,1。(1)直接在时域计算x1(n)与x2(n)的卷积;(2)用DFT计算x1(n)与x2(n)的卷积,总结出DFT的时域卷积定理。解解:设x1(n)和x2(n)的长度分别为M1和M2,X1(k)=DFTx1(n)N,X2(k)=DFTx2(n)N Yc(k)=X1(k)X2(k),yc(n)=IDFTYc(k)N所谓DFT的时域卷积定理,就是当NM1+M21时,yc(n)=x1(n)*x2(n)。离散傅里叶变换(DFT)及其快速算法(

47、FFT)第章本题中,M1=M2=4,所以,程序中取N=7。本题的求解程序ex324.m如下:%程序 ex324.m x1n=2 1 1 2;x2n=1 1 1 1;%时域直接计算卷积yn:yn=conv(x1n,x2n)%用DFT计算卷积ycn:M1=length(x1n);M2=length(x2n);N=M1+M21;X1k=fft(x1n,N);%计算x1n的N点DFTX2k=fft(x2n,N);%计算x2n的N点DFTYck=X1k.*X2k;ycn=ifft(Yck,N)离散傅里叶变换(DFT)及其快速算法(FFT)第章程序运行结果:直接在时域计算x1(n)与x2(n)的卷积yn和

48、用DFT计算x1(n)与x2(n)的卷积ycn如下:yn=2 1 2 2 2 1 2ycn=2.0000 1.0000 2.0000 2.0000 2.0000 1.0000 2.0000离散傅里叶变换(DFT)及其快速算法(FFT)第章25*已知序列h(n)=R6(n),x(n)=nR8(n)。(1)计算yc(n)=h(n)8 x(n);(2)计算yc(n)=h(n)16 x(n)和y(n)=h(n)*x(n);(3)画出h(n)、x(n)、yc(n)和y(n)的波形图,观察总结循环卷积与线性卷积的关系。解解:本题的求解程序为ex325.m。程序运行结果如题25*解图所示。由图可见,循环卷积

49、为线性卷积的周期延拓序列的主值序列;当循环卷积区间长度大于等于线性卷积序列长度时,二者相等,见图(b)和图(c)。离散傅里叶变换(DFT)及其快速算法(FFT)第章题25*解图离散傅里叶变换(DFT)及其快速算法(FFT)第章程序ex325.m如下:%程序ex325.m hn=1 1 1 1;xn=0 1 2 3;%用DFT计算4点循环卷积yc4n:H4k=fft(hn,4);%计算h(n)的4点DFTX4k=fft(xn,4);%计算x(n)的4点DFTYc4k=H4k.*X4k;yc4n=ifft(Yc4k,4);%用DFT计算8点循环卷积yc8n:H8k=fft(hn,8);%计算h(n

50、)的8点DFTX8k=fft(xn,8);%计算x(n)的8点DFTYc8k=H8k.*X8k;yc8n=ifft(Yc8k,8);yn=conv(hn,xn);%时域计算线性卷积yn:离散傅里叶变换(DFT)及其快速算法(FFT)第章26*验证频域采样定理。设时域离散信号为其中a=0.9,L=10。(1)计算并绘制信号x(n)的波形。(2)证明:离散傅里叶变换(DFT)及其快速算法(FFT)第章 (3)按照N=30对X(ej)采样得到(4)计算并图示周期序列试根据频域采样定理解释序列与x(n)的关系。离散傅里叶变换(DFT)及其快速算法(FFT)第章(5)计算并图示周期序列,比较 与验证(4

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com