电子式互感器与常规互感器对比.docx

上传人:太** 文档编号:69493479 上传时间:2023-01-05 格式:DOCX 页数:8 大小:152.41KB
返回 下载 相关 举报
电子式互感器与常规互感器对比.docx_第1页
第1页 / 共8页
电子式互感器与常规互感器对比.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《电子式互感器与常规互感器对比.docx》由会员分享,可在线阅读,更多相关《电子式互感器与常规互感器对比.docx(8页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、第一章电子式互感器与常规互感器对比一、常规互感器分类1.1 电压互感器电压互感器按原理分为电磁感应式和电容分压式两类。电磁感应式多用于220kV及以下各种电压等级。电容分压式一般用于UOkV 以上的电力系统。电压互感器按用途又分为测量用和爱护用两类,对前者的主要 技术要求是保证必要的精确度;对后者可能有某些特殊要求,如要求有第三个绕组,铁芯中有零序磁通等。1.1.1 电磁感应式电压互感器电磁感应式电压互感器的等值电路与变压器的等值电路相同。1.1.2 电容分压式电压互感器在电容分压器的基础上制成。电容C1和C2串联,U1为原边电压,U2为C2 上的电压。空载时,电容C2上的电压为由于C1和C2

2、均为常数,因此正比于原边 电压。但实际上,当负载并联于电容C2两端时,将大大减小,以致误差增大而无 法作电压互感器使用。为了克服这个缺点,在电容C2两端并联一带电抗的电磁 式电压互感器YH,组成电容分压式电压互感器。电抗可补偿电容器的内阻抗。 YH有两个副绕组,第一副绕组可接补偿电容Ck供测量仪表使用;其次副绕组可 接阻尼电阻Rd,用以防止谐振引起的过电压。电容式电压互感器多与电力系统载波通信的耦合电容器合用,以简化系统, 降低造价。此时,它还需满意通信运行上的要求。1.2 电流互感器电磁型电流互感器采用变压器原、副边电流成比例的特点制成。其工作原理、 等值电路也与般变压器相同,只是其原边绕组

3、串联在被测电路中,且匝数很少; 副边绕组接电流表、继电器电流线圈等低阻抗负载,近似短路。原边电流(即被 测电流)和副边电流取决于被测线路的负载,而与电流互感器的副边负载无关。 由于副边接近于短路,所以原、副边电压U1和都很小,励磁电流10也很小。电 流互感器运行时,副边不允许开路。由于一旦开路,原边电流均成为励磁电流, 使磁通和副边电压大大超过正常值而危及人身和设施平安。因此,电流互感器副 边回路中不许接熔断器,也不允许在运行时未经旁路就拆下电流表、继电器等设 施。电流互感器的接线方式按其所接负载的运行要求确定。最常用的接线方式为 单相,三相星形和不完全星形。电流互感器可按以下几种方式分类:(

4、1)按用途分测量用电流互感器(或电流互感器的测量绕组):在正常工作电流范围内,向 测量、计量等装置供应电网的电流信息;爱护用电流互感器(或电流互感器的爱护绕组):在电网故障状态下,向继电 爱护等装置供应电网故障电流信息。(2)按绝缘介质分干式电流互感器:由一般绝缘材料经浸漆处理作为绝缘;浇注式电流互感器:用环氧树脂或其他树脂混合材料浇注成型的电流互感器;油浸式电流互感器:由绝缘纸和绝缘油作为绝缘,一般为户外型。气体绝缘电流互感器:主绝缘由气体构成。(3)按电流变换原理分电磁式电流互感器:依据电磁感应原理实现电流变换的电流互感器;光电式电流互感器:通过光电变换原理以实现电流变换的电流互感器。(4

5、)按安装方式分贯穿式电流互感器:用来穿过屏板或墙壁的电流互感器;支柱式电流互感器:安装在平面或支柱上,兼做一次电路导体支柱用的电流 互感器;套管式电流互感器:没有一次导体和一次绝缘,直接套装在绝缘的套管上的 一种电流互感器。母线式电流互感器。没有一次导体但有一次绝缘,直接套装在母线上使用的 一种电流互感器。1. 3电磁式互感器-额定变比和误差二、电子式互感器分类电子式互感器是一大类新型互感器的总称,包括电子式电流互感器和电子式 电压互感器。前者采纳低功率线圈、罗氏线圈或光学材料作为一次传感器,后者 采纳电阻/电容分压器或光学材料作为一次传感器,采用光纤进行信号传输,通 过对测量电量的信号处理,

6、实现数字量或模拟量的输出。电子式电流互感器从原理上可分为两类:一是基于电磁感应原理的互感器, 如采纳Rogowski线圈的互感器、采纳低功率线圈的互感器(LPCT);二是基于法 拉第磁光效应的光学互感器。电学原理的电流互感器在AIS变电站应用时,要解决处于高电位电子设施的 供电问题,一般采纳大功率激光供能解决,但激光器件长期运行存在老化问题, 给设施的稳定运行带来不利影响;在GIS或HGIS变电站应用时,电子设施可安 装在地电位侧,能够通过站用直流电源直接供电,牢靠性较高。电学原理的电流 互感器在已投运的数字化变电站获得了较多应用。光学原理的电流互感器又分块状玻璃式和全光纤式两种,都是基于法拉

7、第磁 光效应的传感器。块状玻璃式的传感器中采纳的是Verdet常数较大的光学材料, 它对光信号的损耗大,且Verdet常数的温度稳定性比较差,较难进行温度补偿。 全光纤式方案充分采用了法拉第效应的非互易性和光纤中线性双折射的互易性, 目前已成为国际上的主流讨论方案,国内外已经有胜利运行的实例。电子式电压互感器从原理上可分为两类:一是采用电学原理基于电阻、电容、 电感分压的电压互感器;二是光学原理的电压互感器,分为普克尔效应和逆压电 效应两种原理。分压原理的电子式电压互感器在数字化变电站中得到了广泛应用,由于电子 器件无需安装在高电位侧,可直接采纳站用直流系统供电,牢靠性较高。学原 理的电压互感

8、器目前还没有工程应用案例,但已有研制胜利的普克尔效应的电压 互感器。电子式,互感器电子式 电子式电流互 电压互胰羽. 盛器.电学原光学原电学原光学原3.理.理.3-罗氏线 低功率 全光纤 道光坡 电阻分电感分 电容分 曾克尔 逆压电明型.线圈型束型.璃型“ r es.压型n压型效应型效应性.,(电子式互感器分类示意图)2.1 电子式互感器结构及安装2.1.1 独立型电学原理电流互感器独立型电学原理电流互感器主要由一次传感器、远端电子模块、光纤绝缘子、 合并单元四部分组成。一次传感器位于高压侧,包括一个低功率CT、两个空芯 线圈、一个高压电流取能线圈。远端电子模块也称一次转换器,位于高压侧。电

9、学原理电流互感器有两个完全相同远端模块,两个远端模块互为备用,保证互感 落具有较高的牢靠性。绝缘子为内嵌光纤的实芯支柱式复合绝缘子。光纤绝缘子 高压端光纤以ST头与远端模块对接,低压端光纤以熔接的方式与传输信号的光 缆对接。合并单元接收并处理三相电流互感器及三相电压互感器远端模块下发的 数据,对三相电流电压信号进行同步,并将测量数据按规定的合同(IEC60044-8 或IEC61850-9-2)输出供二次设施使用。其结构如下图所示。(独立型电学原理电流互感器)2. 1.2独立型电容分压原理电压互感器独立型电容分压原理电压互感器主要由电容分压器、远端电子模块、合并单 元三部分组成。电容分压器将被

10、测高电压分出一较低电压信号给远端模块进行处 理。远端电子模块也称一次转换器,位于低压侧的底座内。电子式电压互感器有 两个完全相同远端模块,两个远端模块互为备用,保证互感器具有较高的牢靠性。 合并单元同时接收并处理三相电压互感器及三相电流互感器远端模块下发的数 据,对三相电流电压信号进行同步,并将测量数据按规定的合同(IEC60044-8或 IEC61850-9-2)输出供二次设施使用。其结构如下图所示。(独立型电容分压原理电压互感器)2. 1.3独立型电学原理电流电压组合互感器独立型电学原理电流电压组合互感器将电流互感器和电压互感器组合为一 体,主要由一次电流传感器、远端电子模块、分压器、合并

11、单元四部分组成。 次电流传感器位于高压侧,包括一个低功率CT、两个空芯线圈、一个高压电流 取能线圈。远端电子模块也称一次转换器,位于高压侧。互感器有两个完全相同 的远端模块,两个远端模块互为备用,保证互感器具有较高的牢靠性。分压器将 被测高电压分出一较低电压信号给远端模块进行处理,分压信号从分压器的高压 端引出。合并单元一方面为远端模块供应认能激光,另一方面接收并处理三相电 流电压互感器远端模块下发的数据,对三相电流电压信号进行同步,并将测量数 据按规定的合同(IEC60044-8或IEC61850-9-2)输出供二次设施使用。其结构如 下图所示。用工工厂工/tn/*鲍#绮*炭,(独立型电学原

12、理电流电压组合互感器)2. 1.4光学原理电流互感器光学原理电流互感器一般由光纤电流敏感环、电流/电压电气单元及合并单 元组成。光学原理电流互感器从原理可分为磁光玻璃式和全光纤式。磁光玻璃式电子互感器采纳光学玻璃作为电流敏感环,而全光纤式电子互感 器中的敏感元件和传输元件都为光纤。电流电气单元介于光纤电流敏感环和合并 单元之间,实现光探测信号的发送、电流信息的采集和处理及与合并单元的通信 等功能,是全光纤电子式电流互感器的重要组成部分。电流电气单元主要有两种 结构,一种是密闭箱体结构,另一种是机架式结构。合并单元主要功能就是同步 采样和处理多路的电子式互感器输出的光纤数字信号,并将测量数据按规

13、定的合 同(IEC60044-8或IEC61850-9-2)输出供二次设施使用。其结构如下图所示。(光学原理电流互感器)三、电子式互感器与常规互感器对比分析3. 1电子式互感器技术性能特点常规互感器与电子式互感器除原理、结构不同外,在性能上,特殊是暂态性 能、绝缘性能方面有较大区分。电子式互感器的优点在于以下几个方面:(1)消退了磁饱和现象。常规电流互感器在运行中系统发生短路时,在强大的短 路电流作用下,特殊是非周期重量尚未衰减时,断路器跳闸,或在大型变压器空 载合闸后,互感器铁芯将保留较大剩磁,铁芯饱和严峻,将使互感器暂态性能恶 化,使二次电流不能正确反映一次电流,爱护拒动或误动。而电子式互

14、感器的光 电互感器、罗氏线圈电流互感器没有铁芯,不存在饱和问题,暂态性能比常规互 感器好,大大提高了各类爱护故障测量的精确性,从而提高爱护装置的正确动作率,保证电网的平安运行。(2)对电力系统故障响应快。现有爱护装置(包括微机爱护)的爱护原理是基于工 频量进行爱护推断的,而不是采用故障时的暂态信号量作为爱护推断参量,易受 过渡电阻和系统振荡、磁饱和等因素的影响,爱护性能难以满意当今电力系统超 高压、大容量、远距离进展的要求。采用暂态信号作为爱护推断参量是微机爱护 的进展方向,它对互感器的线性度、动态特性都有很高的要求。常规互感器自身 性能的限制不能满意这一要求。(3)消退了铁磁谐振,抗干扰力量

15、强。常规电压互感器中,电磁式电压互感器呈 感性,与断路潜容性断口会产生电磁谐振。此外,电容式电压互感器本身含有电 容元件及多个非线性电感元件(如速饱和电抗器、补偿电抗器和中间变压器),在次侧合闸操作或一次侧短路及二次侧短路并消退故障等时,其自身均将产生瞬 态过程,此过程可能激发稳定的次谐波谐振,从而导致补偿电抗器和中间变压器 绕组击穿。而电子式互感器没有构成电磁谐振的条件、其抗电磁干扰力强。(4)优良的绝缘性能。随着电压等级的提高,电磁式电流互感器、电磁式电压互 感器大大增加了绝缘困难,用油等绝缘材料有爆炸危急,且体积大、重量重。电 子式互感器绝缘相对简洁,高压侧与地电位侧之间的信号传输采纳绝

16、缘材料制造 的玻璃纤维,体积小、重量轻、绝缘性能好。(5)适应电力计量与爱护数字化的进展。电子式互感器能够直接供应数字信号给 计量、爱护装置,有助于二次设施的系统集成,加速整个变电站的数字化和信息 化进程,并引发电力系统自动扮装置和爱护的重大变革。(6)动态范围大。随着电网容量增加,短路故障时,短路电流越来越大,可达稳 态的20-30倍以上。电磁式电流互感器因存在磁饱和问题,难以实现大范围测量。 而电子式电流互感器有很宽的动态范围,光电电流互感器和罗氏线圈电流互感器 的额定电流为几十安培到儿十万安培。一个电子式互感潜可同时满意计量和爱护 的需要。(7)频率响应范围宽。光电互感器、罗氏线圈电流互

17、感器频率响应均很宽,可以 测出高压电力线上的谐波,还可以进行暂态电流、高频大电流与直流电流的测量, 而电磁式互感器传感头由铁芯构成,频率响应很低。(8)经济性好。随着电力系统电压等级的增高,常规互感器的成本成倍提升,而 电子式互感器在电压等级提升时,成本稍有增加。此外由于电子式互感器的体积 小、重量轻,可以组合到断路器或其他一次设施中,共用支撑绝缘子,可削减变 电站的占地面积。3. 2电子式互感器与常规互感器运行状况分析 统计结果显示,目前电子式互感器故障率高于常规互感器,故障主要为采集器故 障,无源电子式电流互感器的光纤故障问题、有源电子式电压互感器的绝缘问题 亦较突出。3. 3电子式互感器与常规互感器应用分析 (1)从采样就地数字化方面,电子式互感器+合并单元与常规互感器+合并单元配 置方案均能实现采样数据的就地数字化,目前电子式互感器+合并单元的配置方 案已有较多工程运行实例,积累了不少现场运行阅历,常规互感器+合并单元的 配置方案是一种过渡措施。(2)采纳电子式互感器可削减一次设施尺寸,进而可对配电装置进行优化,节约 占地面积。(3)电子式互感器的应用是智能电网进展的必定趋势,电子式互感器产品牢靠性 是需要逐步提高的,在这个过程中也是需要将其投入到相关工程中进行检验其牢 靠性,进一步促进产品牢靠性的提升。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 解决方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com