电子电工技术英文课件 (42).pdf

上传人:刘静 文档编号:69164854 上传时间:2022-12-30 格式:PDF 页数:8 大小:311.81KB
返回 下载 相关 举报
电子电工技术英文课件 (42).pdf_第1页
第1页 / 共8页
电子电工技术英文课件 (42).pdf_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《电子电工技术英文课件 (42).pdf》由会员分享,可在线阅读,更多相关《电子电工技术英文课件 (42).pdf(8页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、4.5 Circuit Theorems In the development of circuit technology,some circuit laws,which can be used to simplify circuit analysis,have been summarized,.These circuit laws are called circuit theorems,like superposition theorem,Thvenin theorem,Norton theorem,substitution theorem,reciprocity theorem,maxim

2、um power transfer theorem,and so on.In this section,superposition theorem,Thvenin theorem,and maximum power transfer theorem will be introduced.4.5.1 Superposition Theorem In order to introduce superposition theorem,we need to introduce linearity first.Linearity is a combination of both the additivi

3、ty and the homogeneity.Here we only introduce the additivity.The additivity is that the response to a sum of inputs is equal to the sum of the responses to each input applied individually.Lets take a resistor as an example.For a resistor,viR=(1)From(1),11viR=(2)22viR=(3)123vviR+=(4)From(2)-(4),12123

4、12vvvviiiRRR+=+=+(5)The expression(5)shows a resistor has the property of additivity.A resistor is a linear element.A linear circuit is one that only contains linear elements.Most of circuits are linear circuits.A linear circuit obeys superposition theorem,i.e.,the voltage(or current)response of any

5、 branch in the circuit is equal to the sum of individual responses associated with the individual sources,as if each response had been acting alone.Lets take a simple example of superposition theorem,as shown in Fig.1.11V2Vi Figure 1:Circuit for demonstrating superposition theorem.When each source o

6、perates separately,other source should be set zero.For voltage sources,they should be replaced with short circuits,as shown in Fig.2.11V12V(1)i(2)i Figure 2:Circuits with individual voltage source applying corresponding to the circuit in Fig.1 From Fig.2,it is obvious that (1)2),2A1Aii=(6)According

7、to superposition theorem,(2)(1)3Aiii=+=(7)From Fig.1,we can also conclude 3Ai=,this result is in accordance with that result obtained by superposition theorem.4.5.2 Thvenin Theorem In 1883,a French engineer Leon Thvenin discovered a theorem:any linear two-terminal circuit can be replaced by an equiv

8、alent circuit consisting of a voltage source VTh in series with a resistor RTh,where VTh is the open-circuit voltage at the terminals and RTh is the equivalent resistance between the same terminals when all sources in the circuit are turned off.It is difficult to understand Thvenin theorem,so we gra

9、phically show Thvenin theorem in Fig.3.ThVThVOriginalLinearCircuitEquivalent CircuitThRCircuit Equivalence Figure 3:Circuit for demonstrating Thvenin theorem.From Fig.3,Thvenin theorem actually demonstrates a kind of circuit equivalence.Lets take a circuit as shown in Fig.4 to show how to get the Th

10、venin equivalent circuit.ThV3V21 Figure 4:A circuit to be equivalent to its Thvenin equivalent circuit.From Fig.4,the open-circuit voltage is Th232V12V=+(8)When the voltage source in Fig.4 is turned off(short circuit),the circuit is shown in Fig.5.21 Figure 5:Circuit when the voltage source is turne

11、d off.From Fig.5,the equivalent resistance is Th1 22123R=+(9)The Thvenin equivalent circuit of the circuit in Fig.4 is shown in Fig.6.ThV2V23 Figure 6:Thvenin equivalent circuit of the circuit in Fig.4.In comparison with the circuit in Fig.4,the Thvenin equivalent circuit in Fig.6 is much simpler.An

12、y complex linear two-terminal circuit including DC circuits and AC circuits can be equivalent to a simple circuit consisting of a voltage source in series with a resistor using Thvenin theorem.Thvenin theorem is so amazing that it is very useful in circuit analysis.For example,Thvenin theorem can ap

13、ply in solving maximum power transfer problem,which will be introduced in the following.4.5.3 Maximum Power Transfer Theorem Fig.7 shows a circuit with variable load resistance R.Sometimes we are concerned about how much is the maximum power that the load resistance R can acquire.OriginalLinearCircu

14、itRI Figure 7:Circuit with variable load resistance.To solve the maximum power transfer problem,we can apply Thvenin theorem to simplify the circuit first,as shown in Fig.8.RThVTh venin Equivalent CircuitThRI Figure 8:Simplifying the circuit in Fig.7 by applying Thvenin theorem.From Fig.8,the load c

15、urrent is ThThVIRR=+(10)The power of the load resistance is ()222ThTh2ThThRVVPI RRRRRRR=+(11)From(11),we can get the following inequality:()Th2Th2Th2Th22Th22ThThThThTh2224RVPRRRVRRRR RVVRR RR RR=+=+=+(12)From(12),the maximum power of the load resistance is 2ThmaxThThwhen4RVPRRR=(13)From(13),maximum

16、power transfer theorem states that maximum power transfer take place when the variable load resistance is equal to the Thvenin resistance and the maximum power that the variable load resistance can acquire is 2ThmaxTh4RVPR=.Lets take an example for maximum power transfer problem.Find the maximum pow

17、er the variable load resistance shown in Fig.9 can acquire.3V21R Figure 9:Example for maximum power transfer problem.We can apply Thvenin theorem to simplify the circuit in Fig.9,as shown in Fig.10.2V23R Figure 10:Example for maximum power transfer problem.According to maximum power transfer theorem

18、,maximum power transfer take place when 23R=.The maximum power the variable load resistance can acquire is 22ThmaxTh21.5W2443RVPR=(14)Maximum power transfer theorem introduced above is only applicable for DC circuits.For AC circuits,sometimes we are concerned about how much is the maximum average po

19、wer that the load impedance Z shown in Fig.11 can acquire.LinearACCircuitZI Figure 11:An AC circuit with variable load impedance.To solve the maximum average power transfer problem in the AC circuit,we can also apply Thvenin theorem to simplify the circuit first,as shown in Fig.12.ZThVTh venin Equiv

20、alent CircuitThZI Figure 12:Simplifying the ac circuit in Fig.11 by applying Thvenin theorem.From Fig.12,the load current is ()()ThThThThThThThThRjXRjXRRj XX=+VVVIZZ(15)The average power of the load resistance is ()()22Th22ThTh12RPRRRRXX=+VI(16)From(11),maximum average power transfer take place when

21、 *ThTh0and,that isThXXRR+=ZZ(17)The maximum power that the variable load impedance can acquire is 2ThmaxTh8RPR=V(18)Lets summarize maximum average power transfer theorem for AC circuits:maximum average power transfer take place when the variable load impedance is equal to the conjugate of Thvenin impedance and the maximum average power that the variable load impedance can acquire is 2ThmaxTh4RPR=V.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com