2023年爬壁机器人机器人外文翻译-爬壁机器人的发展.docx

上传人:ylj18****70940 文档编号:66156890 上传时间:2022-12-14 格式:DOCX 页数:15 大小:17.70KB
返回 下载 相关 举报
2023年爬壁机器人机器人外文翻译-爬壁机器人的发展.docx_第1页
第1页 / 共15页
2023年爬壁机器人机器人外文翻译-爬壁机器人的发展.docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2023年爬壁机器人机器人外文翻译-爬壁机器人的发展.docx》由会员分享,可在线阅读,更多相关《2023年爬壁机器人机器人外文翻译-爬壁机器人的发展.docx(15页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、2023年爬壁机器人机器人外文翻译-爬壁机器人的发展 爬壁机器人的发展 摘要很长时间以来,人们希望能够利用爬壁机器人来营救墙壁检测和灭火,在我们的试验室里已经研制了四种特别不同的机器人,第一种机器人有一个大的吸附器其利用了与气垫船相反的原理;其次种有两足行走,并且每足上有一小吸附器;第三种通过驱动器的挤力在不规则的垂直墙壁上移动,这是一种墙体驱动机器人;第四种可在必要的时候短距离跃入空中,这里将探讨这些机器人的机构和限制系统。 1、 介绍 很长时间来,人们期望机器人能够在垂直的墙壁上移动,它可用在高楼大厦里来营救墙壁检测和灭火,在过去的二十年里,我们试验室研制了四种完全不一样的爬壁机器。第一类

2、有大的吸附器和爬行器作为移动机构,这种被称为大吸附器机器人。最近,在日本,已发展出许多种类的这一类型机器人用于检测墙壁。这里将探讨与在吸气和风扇转动间相适用的机构和空气动力学。 其次种类型是双足行走机器人,每足上有一小吸附器而被称为双足机器人,这里也将探讨其机构和限制系统,并给出一模拟探讨,由于这里模型适用于几乎全部的不规则墙面,它比第一种应用范围更广。 通常而言,行走运动不是很快,因此行走机器人爬行到墙的高处将耗费许多时间,然而,又须要这样一种机器人,它能在短时间爬到建筑物的高处,为了紧急的目的,例如携带救援工具或者给建筑里灭火。第三种机器人旨在达到这些目的,它有驱动器,这些驱动器的垂直墙面

3、的挤力减小微弱,这样能够利用轮与墙间的摩檫力并支撑机器人自身。这是一种墙体驱动机器人。有时候意外的强风会发生在高层建筑物的墙体上,在这种状况下,用来弥补风的力气的限制系统,对于避开让机器人从墙上掉下很重要,这种状况已经在6,7里简洁的探讨过。 通常在建筑物的低处有许多障碍,比如树,屋檐,入口等等。在这些状况下,假如机器人能够飞跃这些障碍并到达上面的墙面将很管用,另外假如机器人意外地从高处的墙面上掉 落,制作一软着陆来避开危害自身或四周环境很有必要。这些目标可通过用能使其飞的机构和限制系统来完成。由于墙壁驱动机器人有足够的挤力来支撑其自身,它可改造成一种能够飞或着陆的新的机器人。这是第四种模型,

4、其机构和限制系统将被探讨,并提出其操纵实力的模拟探讨。 2、 大吸附器机器人 21 大吸附器模型的机构 很久以来,人们期望研制出能够在高层建筑的垂直或悬空的墙面,或者巨轮的侧面等上面移动的移动机器人。然后,这种机器人能用来代替人搬运营救工具或做其它工作。为了实现这种机器人,须要用来支撑机器人或使其在墙上向上移动的摩擦力。磁力或真空压力可产生指向墙面的固定力,轮子或履带都可用作在平且宽的垂直墙面上的移动机构。1966年研制出了一台大吸附器机器人(如图1所示),当用机器人在墙上移动时从吸附器的外围空隙中吸取了少量的空气。利在吸附器的外围安装一刷子和(或)弹性围罩来减弱空气流和保证吸附器内部足够的负

5、压,它能在不规则的小墙面上移动。这个模型的机构和尺寸如图2所示:离心风扇由小引擎驱动,履带由直流电动机驱动。 图1 大吸附器机器人 22平安条件 在墙上的固定力是负压和吸附器面积乘积; F=PA (1) 1引擎 2皮带轮 3驱动电机 4刷子和围罩 5直流电机 6履带轮 7风扇 8燃料箱 图 2 大吸附器模型的结构示意图 图 3 大吸附器机器人的滑动及脱落的平安区域 下面是避开滑动和掉下的条件: (2) F/W>1 F/W>h/R (3) 这里W是机器人的净重,是摩擦系数,h为墙面到重心的距离,R为吸附器中心到最低支撑点的距离。 假如机器人在条件 h/R (4) 下设计,掉下可以避开

6、。这些关系如图3所示,每个曲线的上半区域为平安区域。 23 固定力与风扇性能的匹配 由于用来支撑机器人在垂直墙壁上的固定力与风扇性能干脆相关,因此,它们之间的匹配特别重要,风扇性能(粗实线)和在有效误差e下的匹配线(点杠线)如图4所示:横坐标代表空气流质量Q,纵坐标是负压P和固定力F,并且每条曲线的参数是临界速度n,常量引擎节流的工作曲线由通过点Z,Y,X的曲线表示,在粗糙水泥墙面上得到所需最小负压测量为P=35mm水柱。 由于模型的净重W=44kgf,摩擦系数=1.05确定,点W,V,U是各误差e的所需最小必需压力。例如,假如风扇在点X以大误差e=5.3mm工作,最小压力大约为15mm水柱,

7、来自点X与U之间的中点,因此,这种模型在更小摩擦系数的墙面上移动是危急的。 图 3 大吸附器机器人的风扇性能图 误差的突变取决于由墙面的不规则所导致对应的空气质量流和之后负压的改变。风扇的旋转速度始终改变至引擎和风扇间的达到力矩平衡。这种关系如下: I=mTE-TF 这里I是引擎和风扇旋转部分的惯性矩,为风扇的角速度,m为引擎和风扇之间的机械效率,TE为驱动力矩,TF为风扇所需的 矩。假如误差从e=5.3突变至1.8mm,风扇工作曲线通过X-Z-Z。另一方面,假如误差增加,通过Z-Y-X-X。因此,间隙的突然增加过程中,负压比终点X处要大,故在改变过程中可获得足够的力。 24 总体平安条件 总

8、体平安条件归纳如下: (a)脱落是致命的,因此应避开运用公式(4)的条件。 (b)在吸附器的外部削减空气泄漏 有用的。 (c) 由于间隙的突然增加,负压改变有肯定的时间滞后,因此引擎应当短时间打开以使补偿吸附器里的足够压力。 3、两足行走机器人 3、1 行走机构 图 5 双足行走机器人的结构 现在地面上行走机器人有许多种类型的行走机构,例如两足定位,四足的,六足的等等。类似的,现在爬墙机器人也有许多种机构。 垂直轨道 斜轨道 图 6 行走运动 The inverse kinematics analysis of 3-D.O.F welding robot designed for ripple

9、 polygonal line seam of container Yu-Qiang Zhang-Hua Mao Zhi-wei Ye Jian-xiong (Robot&Welding Automation Key Laboratory Jiang Xi Nanchang University, Nanchang, 330029) Abstract:To resolve the welding problem existing in ripple polygonal line seam of container,we develop a 3-D.O.F welding robot.

10、An inverse kinematics analysis of the designed welding-robot based on D-H displacement transformation matrix was put forward in this paper. In order to make the welding gun fastend on the end effector keep a certain posture, the three joints of robot should act coordinately, thus this makes an assur

11、erance for the consistency of welding quality. This paper presents the possibility that the robot can track the trajectory under a certain unchanged welding velocity by controlling the discipline of the three joints, and it is verified by means of simulation in MATLAB. Key words:3-D.O.F; inverse kin

12、ematics; act coordinately ; welding posture 0 Introduction. Figure.1 Ripple polygonal line seam of container When welding,the welding torch makes the relative motion along the weld seam line by a certain posture .The choice of the welding posture is the key to guarantee a good welding quality,and th

13、e welding torch position posture has an important influence to forming of the weld seam.At present,in the welding process of ripple polygonal line seam of container,the welding torch cannot adjust the angle between itself and the welding speed with the profile change.As is shown in the figure.1,the

14、shaping of weld seam at linear section is not consistent with that at hypotenuse section.To resolve the welding problem existing in ripple polygonal line seam of container,this paper make an inverse kinematics analysis of the designed 3-D.O.F welding robot through developing the kinematics equation

15、of the robot which lets the posture of the welding torch make a suitable adjustment with the profile change ,while making sure of the welding torch movement along the curve of weld seam with an constant speed ,thus improve the shaping of the weld seam and then make sure the welding equality. 1.The p

16、rinciple of the mechanism movement of 3-D.O.F welding robot To resolve the welding problem existing in ripple polygonal line seam of container at present.We developed a kind of 3-D.O.F robot. This robot have three movement joints: about translate between right and left the welding robot main body 1;

17、 about translate up and down the cross slide 2;the terminal effector 3 which making the rotary motion.We achieve that the welding speed does not change with the change of the posture of the terminal effector through the coordinated movement of the three joints. 2.The inverse kinematics analysis of 3

18、-D.O.F welding robot. 2.1 The simplification of kinematics models Figure. 2 The moving diagram of 3-D.O.F welding robot . As shown in figure.2,the welding torch(which is presented by a dark point at the end of movement joint 3) is attached at the terminal effector 3 of the welding robot.In the proce

19、ss of welding,the position posture of the welding torch should make a suitable adjustment with the shape change of the weld seam.The adjustment presents as the coordinated movement. 2.2 The establishment of kinematics model In order to portray the movements of each joint ,a decca rectangular coordin

20、ate system is established for the moving mechanism of the robot ,as shown in figure.1.The initial space position relations of the coordinate systems established on each rigid body .Those coordinate systems are presented in figure.3.0 is the base coordinate system,1,2,3 are the moving coordinate sysy

21、tems established on the robot main body ,on the cross slide and the terminal effector.we will analyze the moving law of the movement joint by using the movements of 1,2,3. We could portray the coordinate value of a point of B in A by using equal time coordinate 0transformation matrix BT.Establishing

22、 three equal time coordinate transformation matrix 1T、A 1 22T、3T. 1001T=0001000l0+S11001001,2T=001Z010000cqsq0L1+S22,3T=010010-sqcq00 t000L2 1001Where l0,L1,L2 represent the initial distances between each coordinate system separately;S1,S2 are the displacement of 1,2 in certain time t-t0,and S1=t t0

23、v1t, S2=v2dt, V1,V2 are the t0 speed of the zero point of 1,2 separately ;is the rotated angle of the third movement joint ; cq=cosq,sq=sinq 00By transformation equation 3T=1T21T32T,we have: cqsq03T=00-sqcq000l0+S10L1+L2+S2 1Z01 Then we could establish the transformation relation between the descrip

24、tion of one point in 0 and that in 3: x0cqysq0p03p0=3T,that is =z001110-sqcq000l0+S10L1+L2+S21Z01x3y3.(a) z31 Where: (x0,y0,z0),(x3,y3,z3) are the coordinate value of point p in 0 and 3 separately. 2.3 The inverse kinematics solutions During the process of welding ,we should make sure of the vertica

25、l angle between the welding torch and the weld seam .Its movement has two restraints: a constant speed ; a determined weld seam curve.We take a cycle of the ripple for carrying on the reverse kinematics solution ,and analyze the driving laws which the three movement joints coordinated actions should

26、 follow so that satisfy the two restraints .In a cycle the welding torch needs to pass through four turning points .This article take the first turning point as an example to explain the process of the reverse solution .This process is divided into three stages ,namely linear section ,circular arc c

27、hange-over section and hypoteneuse section . As the moving path of the welding torch ,in free time t ,the coordinates of the point at the end of the welding torch are (x3,y3,z3,1)=(0,r,0,1) and x0,y0,z0,1 respect to 3 and 0 separately . By expression (a), we have x0cqysq0=z0010-sqcq000l0+S10L1+L2+S2

28、1Z010r.(b) 01 According to the weld seam in reality ,we assume the third movement joints angle acceleration &(t). as q 2.3.1 The movement of the point in linear section We assume the start time of the movement as t0,the coordinates of the point at time t respect to 0 are x0=l0+vwt; y0=L1+L2+r;z0=Z,

29、Substituting equation (b) into it , and making differentiation with respect to time on S1,S2,we have the moving law of movement joints 1 and 2: &(t)cosq(t)v1=vw+q &(t)sinq(t)v=rq2 2.3.2 The movement of the point in circular arc change-over section Figure.4 The graphical representation of the arc tra

30、nsition at the turning point. Suppose the robot move to this stage at time t1, the points position relative to 0 is: x0=l1,y0=Y=L1+L2+r,the angle speed of 3 w=0. When the robot is moving ,by spatial geometry relations,we have : x0=l1+Rsinf(t),y0=Y+R1-cosf(t) S1=l1+R*sinf(t),the speed law of movement

31、 joints 1 and 2 are : S2=R*1-cosf(t) &(t)cosf(t)v1=vx=Rf&(t)sinf(t) v=v=Rfy2 The speed of the end of the welding torch along the direction which is parallel to the direction of the weld seam is constant,that is the welding speed is constant. 222&(t)=vw,f(t)=vw(t-t), By the spatial geometry: vx+vy=vw

32、,therefore f1RR t1tt1. &(t)cosf(t)=vcosf(t)v1=vx=RfwThus &v=v=Rf(t)sinf(t)=vsinf(t)yw2 2.3.3 The movement of the point in wave hypoteneuse section Suppose the robot moving to this stage at time t1,the coordinates of the point respect to 0 is x0y0z01=al+v+v(t-t)cosaww102wL+L+r+v(t-t)sina2w11Z1,after

33、the reverse solution yields &(t)cosq(t)v1=vwcosa+rq . &v2=vwsina+rq(t)sinq(t) According to the same method, we could get the coordinated movements law of the three movement joints ,and satisfy the constraint conditions in a ripple cycle .And then we could make sure of the perpendicular relation betw

34、een the welding torch and the weld seam at different section. 3. The simulation of the reverse kinematic analysis of the 3-D.O.F welding robot The calculation is based on the determined moving law of the third joint and make sure that it satisfy the two constraint conditions ,and reverse deduce the

35、moving law of the two other joints 1,2 . To verify the process of reverse solution ,we carry on the simulation by the matlab software .we establish some spatial geometry size : l0=0,L1=L2=0.1m,the rotating radius of the rotating joint r=0.1m , the angle between the linear section and hypoteneuse section at the turning point is p/4. In a welding cycle ,the change rule of the rotating arms angle acceleration is shown as figure.5 Figure.5 The angle acceleration change rule of joint 3 Thus we could obtain the change rule of the third joints rotating angle ,as shown in figure.6

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com