无机化学第三章化学反应速率和化学平衡精.ppt

上传人:石*** 文档编号:65061747 上传时间:2022-12-02 格式:PPT 页数:86 大小:5.59MB
返回 下载 相关 举报
无机化学第三章化学反应速率和化学平衡精.ppt_第1页
第1页 / 共86页
无机化学第三章化学反应速率和化学平衡精.ppt_第2页
第2页 / 共86页
点击查看更多>>
资源描述

《无机化学第三章化学反应速率和化学平衡精.ppt》由会员分享,可在线阅读,更多相关《无机化学第三章化学反应速率和化学平衡精.ppt(86页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、无机化学第三章化学反应速率和化学平衡第1页,本讲稿共86页3.13.1化学反应速率化学反应速率3.3.1反应速率与浓度的关系3.3.1.1反应速率的表示方法(1 1)化学反应速率化学反应速率a.反应速率定义反应速率定义1.1.传统的定义传统的定义 反应速率反应速率 是指在一定条件下单位时间内某化学反应的反应物转化为是指在一定条件下单位时间内某化学反应的反应物转化为生成物的速率,对于均匀体系的恒容反应,习惯用单位时间内反应物生成物的速率,对于均匀体系的恒容反应,习惯用单位时间内反应物浓度的减少或者产物浓度的增加来表示,而且习惯取正值。浓度的减少或者产物浓度的增加来表示,而且习惯取正值。浓度常用浓

2、度常用mol.L-1,时间常用,时间常用s,min,h,d,y.反应速率又分为平均速率和瞬间速率两种表示方法反应速率又分为平均速率和瞬间速率两种表示方法.第2页,本讲稿共86页瞬间速率:某瞬间(即瞬间速率:某瞬间(即 t0)的反应速率的反应速率平均速率平均速率2.40.4起始浓度起始浓度/molL-12.03.00.02s末浓度末浓度/molL-11.8Example Example 1 1第3页,本讲稿共86页2.2.用反应进度定义的反应速率用反应进度定义的反应速率化学计量数化学计量数()化学反应化学反应 cC+dD=yY+zZ 移项移项 0=-cC-dD+yY+zZ 令令 -c=C、-d=

3、D、y=Y、z=Z0 B BB B B可简化写出化学计量式的通式:可简化写出化学计量式的通式:得得 0=CC+DD+YY+ZZ B包含在反应中的分子、原子或离子包含在反应中的分子、原子或离子B数字或简分数,称为数字或简分数,称为(物质物质)B的化学的化学 计量数计量数第4页,本讲稿共86页例例 N2+3H2=2NH30=N2 3H2+2NH3 =(N2)N2+(H2)H2+(NH3)NH3N2、H2、NH3的化学计量数的化学计量数(N2)=1、(H2)=3、(NH3)=2 表明反应中每消耗表明反应中每消耗1mol N2和和3mol H2 生成生成2mol NH3第5页,本讲稿共86页反应进度反

4、应进度0 B BB B B对于化学计量方程式对于化学计量方程式 d=dnB/B nBB的物质的量的物质的量 的单位为的单位为mol B为为B的化学计量数的化学计量数 改写为改写为 dnB=B d开始时开始时0=0,、nB=反应进度为反应进度为时:时:nB=B 第6页,本讲稿共86页反应进度反应进度 nB=B即任一化学反应各反应物及产物的改变即任一化学反应各反应物及产物的改变量量(nB)均与反应进度均与反应进度()及各自的计量及各自的计量系数系数(B)有关。有关。第7页,本讲稿共86页例例 反应:反应:N2+3H2=2NH3N2、H2、NH3的化学计量数的化学计量数 (N2)=1、(H2)=3、

5、(NH3)=2当当0 00 0时时,若有足够量的若有足够量的N N2 2和和H H2 2、n n(NH(NH3 3)0 0根据根据 n nB B B B、n nB B/B B n(N2)/mol n(H2)/mol n(NH3)/mol/mol0000 -1 -1-321-2-642121232第8页,本讲稿共86页 n(N2)/mol n(H2)/mol n(NH3)/mol/mol0000 -1 -1-321-2-642121232对同一化学反应方程式,对同一化学反应方程式,反应进度反应进度()的值与的值与选用反应式中何种物选用反应式中何种物 质的量的变化质的量的变化进行计算无关。进行计算

6、无关。例例 反应:反应:N2+3H2=2NH3第9页,本讲稿共86页注意注意:同一化学反应如果化学反应方程式的写法同一化学反应如果化学反应方程式的写法 不同(亦即不同(亦即B B不同),相同反应进度时不同),相同反应进度时 对应各物质的量的变化会有区别。对应各物质的量的变化会有区别。例如:当例如:当=1mol 时时反应方程式反应方程式 N2+H2=NH3N2+3H2=2NH3 n(N2)/mol -1 n(H2)/mol -3 n(NH3)/mol 1212123232第10页,本讲稿共86页2.2.用反应进度定义的反应速率用反应进度定义的反应速率 反应速率:单位体积内反应进行程度随时间的变化

7、率反应速率:单位体积内反应进行程度随时间的变化率对于恒容反应,对于恒容反应,V V不变,令不变,令 ,则得:,则得:第11页,本讲稿共86页对于上述对于上述 化学计量方程式化学计量方程式 :用反应进度定义的反应速率的量值与表示速率物质的选择无关,用反应进度定义的反应速率的量值与表示速率物质的选择无关,亦即一个反应就只有一个反应速率值,但与计量系数有关,所以,亦即一个反应就只有一个反应速率值,但与计量系数有关,所以,在表示反应速率时,必须写明相应的化学计量方程式。在表示反应速率时,必须写明相应的化学计量方程式。a aA +A +b bB B y yY +Y +z zZ Ztzctyctbctac

8、ddddddddZYBA=-=-=u第12页,本讲稿共86页QuestionQuestion 1 1反应反应 2W+X Y+Z 2W+X Y+Z 哪种速率表达式是正确的?哪种速率表达式是正确的?tWctZctYctZctWctXctYctXcd)(dd)(dd)(dd)(dd)(dd)(dd)(dd)(d.d.cb.a.-=-=第13页,本讲稿共86页3.2影响反应速率的因素3.2.1浓度对反应速率的影响化学反应的过程有的简单,有的则比较复杂。反应物只经一步反应就变为生成物的称基元反应,也叫简单反应。其它经过多步过程的反应称非基元反应,也叫复杂反应。对元反应来说,1867年科学家就从实验中总结

9、出一条规律,即化学反应速率跟反应物的浓度的乘积成正比,这就是最早提出的质量作用定律。(1)质量作用定律和速率方程式第14页,本讲稿共86页基元反应基元反应:反应物一步就直接转变为产物反应物一步就直接转变为产物 如:如:2NO2 2NO+O2 NO2+CO NO+CO2 非基元反应非基元反应:反应物经过若干步反应物经过若干步(若干个若干个 基元反应步骤基元反应步骤)才转变为产物。才转变为产物。如如2NO+2H2 N2+2H2O 2NO+H2N2+H2O2 H2O2+H2 2H2O 又如又如 H2+I2(g)2HI I2(g)2I(g)H2+2I(g)2HI(g)第15页,本讲稿共86页2007-

10、5-27 质量作用定律质量作用定律对对基基元元反反应应,在在一一定定温温度度下下,其其反反应应速速率率与与各反应物浓度幂的乘积成正比。各反应物浓度幂的乘积成正比。如:基元反应如:基元反应 aA+bBcC+dD c(A)ac(B)b =kcc(A)ac(B)b(1)为瞬时速率为瞬时速率(2)kc为速率常数为速率常数,反应物为单位浓度时的反应速率反应物为单位浓度时的反应速率,kc越大,给定条件下的反应速率越大越大,给定条件下的反应速率越大同同一一反反应应,k kc与与反反应应物物浓浓度度、分分压压无无关关,与与反反应应的性质、温度,催化剂等有关的性质、温度,催化剂等有关(3)式中各浓度项的幂次之和

11、式中各浓度项的幂次之和(a+b)为反应级数为反应级数质量作用定律只适用质量作用定律只适用基元反应基元反应。第16页,本讲稿共86页 反应速率方程反应速率方程为什么?实际上反应分三步进行为什么?实际上反应分三步进行:C2H4Br2+KIC2H4+KBr+I+Br(慢反应慢反应)KI+BrI+KBr KI+2IKI3 反应速率决定了整个反应的速率反应速率决定了整个反应的速率 反应:反应:C2H4Br2+3KIC2H4+2KBr+KI3 测得测得 =kcc(C2H4Br2)c(KI)而不是而不是 =kcc(C2H4Br2)c(KI)3第17页,本讲稿共86页 反应速率方程反应速率方程书写反应速率方程

12、式应注意书写反应速率方程式应注意:(1)稀溶液反应稀溶液反应,速率方程不列出溶剂浓度速率方程不列出溶剂浓度(2)固体或纯液体不列人速率方程中固体或纯液体不列人速率方程中如如 C(s)+O2(g)CO2(g)=kcc(O2)如如 C12H22O11+H2O C6H12O6+C6H12O6 =kc c(C12H22O11)c(H2O)=kcc(C12H22O11)葡萄糖葡萄糖 果糖果糖第18页,本讲稿共86页 反应级数反应级数aA+bB cC+dD =kcc(A)c(B)、分别表示物质分别表示物质A、B的反应级数的反应级数+表示反应的总级数表示反应的总级数 反应式反应式速率方程速率方程反应反应 级

13、数级数2HI2HI(g g)HH2 2(g g)+I+I2 2(g g)=k 0SOSO2 2ClCl2 2(g g)SOSO2 2(g g)+Cl+Cl2 2(g g)=kc(SOSO2 2ClCl2 2)1CHCH3 3CHOCHO(g g)CHCH4 4(g g)+COCO(g g)=kc(CHCH3 3CHOCHO)3/23/2NONO2 2(g g)+COCO(g g)NONO(g g)+COCO2 2(g g)=kc(NONO2 2)c(COCO)1+1注意注意:不一定不一定=a、=b 第19页,本讲稿共86页对于复杂反应:,反应级数:若=1,A为一级反应;=2,B为二级反应,则+

14、=3,总反应级数为3。,必须通过实验确定其值。通常a,b。k 反应速率系数:零级反应 molL-1 s-1;一级反应 s-1;二级反应 (molL-1)-1 s-1;k 不随浓度而变,但受温度的影响,通常温度升高,k 增大。第20页,本讲稿共86页3.2.23.2.2温度对反应速率的影响温度对反应速率的影响 范霍夫根据大量的实验数据总结出一条经验规律:温度每升高10 K,反应速率近似增加24倍。这个经验规律可以用来估计温度对反应速率的影响。例如:某反应在390 K时进行需10 min。若降温到290 K,达到相同的程度,需时多少?解:取每升高10 K,速率增加的下限为2倍。第21页,本讲稿共8

15、6页阿仑尼乌斯(阿仑尼乌斯(ArrheniusArrhenius )方程)方程程程(1)指数式:描述了速率随温度而变化的指数关系。A称为指前因子,Ea 称为阿仑尼乌斯活化能。(2)对数式:描述了速率系数与 1/T 之间的线性关系。可以根据不同温度下测定的 k 值,以 lnk 对 1/T 作图,从而求出活化能 。18891889年年ArrheniusArrhenius提出了提出了k k与与T T之间的定量关系之间的定量关系第22页,本讲稿共86页 对反应对反应 2N2O5(g)4NO2(g)+O2(g),若有下列数据,计算其,若有下列数据,计算其反应的活化能反应的活化能.T()T(K)1/T(K

16、)k(s-1)ln(k)20 293 3.4110-3 2.0 10-5 -10.82 30 303 3.30 10-3 7.3 10-5 -9.53 40 313 3.19 10-3 2.7 10-4 -8.22 50 323 3.10 10-3 9.1 10-4 -7.00 60 333 3.00 10-3 2.9 10-3 -5.84 Example 4Example 4 k-T k-T 图图 lnlnk k-1/-1/T T 图图第23页,本讲稿共86页阿仑尼乌斯公式阿仑尼乌斯认为A和 Ea 都是与温度无关的常数。实际上活化能和指前因子均与温度相关,不过对某反应而言,当温度变化在指定范

17、围100 K以内时,Ea和A可看作是不随温度改变的常数。显然显然 为直线关系,直线的斜率为为直线关系,直线的斜率为 ,直,直线的截距为线的截距为lnAlnA.Tk1lnREa-第24页,本讲稿共86页3.3.1碰撞理论 只有具有足够能量的反应物分子的碰撞才有可能发生反应。这种能够发生反应的碰撞叫有效碰撞有效碰撞。发生反应的有效碰撞的分子,还必须沿着特定的方向碰撞。那些具有足够高能量,能发生有效碰撞的分子称为活化活化分子分子,要使普通分子成为活化分子所需最小能量称为活化能活化能。3.3.反应速率理论 第25页,本讲稿共86页(1 1).活化分子活化分子(2 2).活化能活化能分子发生有效碰撞所必

18、须具有的最低能量若以分子发生有效碰撞所必须具有的最低能量若以E Ec c表示,则具有等于或超过E Ec c能量的分子称为活化分子,能量低于E Ec c的分子称为的分子称为非活化分子或者普通分子。非活化分子或者普通分子。活化分子具有的平均能量活化分子具有的平均能量 与反应物分子的平均能量与反应物分子的平均能量 之差称为反应的活化能之差称为反应的活化能 :活化能活化能(1.3.2)(1.3.2)每一个反应都有其特定的活化能,一般化学反应的活化能在每一个反应都有其特定的活化能,一般化学反应的活化能在6060250kJ250kJmolmol-1-1之间。反应的活之间。反应的活化能越小,反应速率越大。化

19、能越小,反应速率越大。一般认为一般认为E Ea a小于小于63 kJ63 kJmolmol-1-1的反应为快速反应。的反应为快速反应。第26页,本讲稿共86页OCONO3.3.2.过渡态理论 具有足够能量的分子彼此以适当的空间取向相互靠近到一定程度时,会引起分子或原子内部结构的连续性变化,使原来以化学键结合的原子间的距离变长,而没有结合的原子间的距离变短,形成了过渡态的构型,称为活化络合物活化络合物。例如:活化络合物(过渡态)反应物(始态)生成物(终态)OCNOO+OCONO+第27页,本讲稿共86页ON +C OOONOCON O+O C OEa(逆)(正)(正)Ea(逆)EacEacEIE

20、IIEIEII第28页,本讲稿共86页A+BCAB+CEa1abcEa2r Hm反应途径的能量变化反应历程能量Ea2:逆反应活化能Ea1:正反应活化能r Hm=Ea1Ea2ABC活化配合物O第29页,本讲稿共86页E反应物(始态)势能E生成物(终态)势能正反应的活化能 Ea(正)=Eac-E()逆反应的活化能 Ea(逆)=Eac-E()rHm=E()-E()=Eac-Ea(逆)-Eac-Ea(正)rHm=Ea(正)-Ea(逆)Ea(正)Ea(逆),rHm 0,为放热反应;Ea(正)Ea(逆),rHm 0,为吸热反应。第30页,本讲稿共86页3.3.33.3.3催化剂与反应速率的关系催化剂与反应

21、速率的关系催化剂催化剂:一些能显著一些能显著改变化学反应速率,改变化学反应速率,而在反应前后其自而在反应前后其自身的组成、质量和身的组成、质量和化学性质基本保持化学性质基本保持不变的物质不变的物质.第31页,本讲稿共86页 催化剂与反应物之间形成一种能量较低的活化配合物,改变了反应的途径。无催化活化配合物无催化活化配合物Ea无催化无催化反应历程能量催化活化配合物催化活化配合物Ea催化催化反应物生成物 催化剂改变反应途径示意图 O第32页,本讲稿共86页例如:反应 2 H2O2(aq)2H2O(l)+O2(g)无催化剂时,反应的活化能为 75.3 kJmol1;用 I 做催化剂时,反应的活化能为

22、 56.5 kJmol1;若使用过氧化氢酶,更能把反应速率提高到 1023 倍以上。第33页,本讲稿共86页 催化剂能缩短平衡到达的时间,但不能改变平衡状态,反应的平衡常数不受影响。催化剂不能启动热力学证明不能进行的反应(即 r Gm 0 的反应)。催化剂有均相催化和多相催化 第34页,本讲稿共86页1.均相催化:催化剂与反应物种在同一相中的催化反应。没有催化剂存在时,过氧化氢的分解反应为:加入催化剂Br2,可以加快H2O2分解,分解反应的机理是:第一步第二步总反应:第35页,本讲稿共86页催化剂对反应活化能的影响第36页,本讲稿共86页2.多相催化:催化剂与反应物种不属于同一物相的催化反应。

23、汽车尾气(NO和CO)的催化转化:反应在固相催化剂表面的活性中心上进行,催化剂分散在陶瓷载体上,其表面积很大,活性中心足够多,尾气可与催化剂充分接触。第37页,本讲稿共86页酶催化:以酶为催化剂的反应。特点:高效 高选择性 条件温和3.3.酶催化酶催化第38页,本讲稿共86页催化剂的重要性 从右图来看出,加入催化剂后,正反应活化能降低的值与逆反应括化能降低的值是相等的。这表明,催化剂对正、逆反应的作用是同等的,它只加快反应速率,而不影响化学平衡,不改变反应方向。催化剂还具有选择性,某一种催化剂往往只对某一种反应起催化作用,而不能催化其它反应。有催化与天催化的反应活化能比较第39页,本讲稿共86

24、页需要注意以下特点需要注意以下特点 :催化剂只能通过改变反应途径来改变反应速率,催化剂只能通过改变反应途径来改变反应速率,但不能改变反应的焓变但不能改变反应的焓变(r rH Hmm)、方向和限度、方向和限度 在反应速率方程中,催化剂对反应速率的影响体现在反应速率方程中,催化剂对反应速率的影响体现在反应速率常数(在反应速率常数(k k)内。对确定反应来说,反应)内。对确定反应来说,反应温度一定时,采用不同的催化剂一般有不同的温度一定时,采用不同的催化剂一般有不同的k k值。值。对同一个可逆反应来说,催化剂等值地降低了正、逆对同一个可逆反应来说,催化剂等值地降低了正、逆反应的活化能。反应的活化能。

25、催化剂具有选择性。催化剂具有选择性。第40页,本讲稿共86页3.4 化学平衡3.4.1可逆反应与化学平衡1.4.1.1可逆反应与化学平衡(1)可逆反应 在同一条件下,既能向正反应方向又能向逆反应方向进行的反应。仅有少数的化学反应其反应物能全部转变为生成物,亦即反应能进行到底。Ag +Cl AgCl 2KClO3 2KCl+3O2 MnO2第41页,本讲稿共86页(2)化学平衡的基本特征有些化学反应逆反应比较显著。例如,373K时,将0.100mol无色的N2O4气体放入1L抽空的密闭容器中,立刻出现红综色。N2O4 2NO2时间/s 02040 6080120C(N2O4)/(molL-1)C

26、(NO2)/(molL-1)0.1000.0000.0700.0600.0500.1000.0400.1200.0400.1200.0400.120第42页,本讲稿共86页0.0000.0200.0400.0600.0800.1000.120020406080100NO2N2O4c/molL-1N2O4-NO2体系平衡的建立第43页,本讲稿共86页t/s/molL-1 s-1可逆反应的反应速率变化示意图可逆反应的反应速率变化示意图第44页,本讲稿共86页(3)化学平衡:正、逆反应速度相等时,体系所处的状态叫做化学平衡化学平衡状态特征:(1)前提:恒温,封闭体系,可逆反应(2)条件:正、逆反应速

27、率相等(3)标志:系统的组成不再随时间而变。(4)化学平衡是动态平衡。第45页,本讲稿共86页3.4.1.2平衡常数 1.实验平衡常数 2.书写平衡常数关系式的规则 3.标准平衡常数 第46页,本讲稿共86页1.实验平衡常数化学平衡常数:任何可逆反应,不管反应的始态如何,在一定温度下达平衡时,各生成物平衡浓度幂的乘积与反应物平衡浓度幂的乘积之比值是一个常数。以浓度表示的称为浓度平衡常数(Kc),以分压表示的称为压力平衡常数(Kp)。cC(g)+dD(g)yY(g)+zZ(g)第47页,本讲稿共86页 PC=C RT,PD=DRT PY=Y RT,Pz=ZRT则:cC(g)+dD(g)yY(g)

28、+zZ(g)cC(g)+dD(g)yY(g)+zZ(g)令(令(y+z)y+z)(c+d)=(c+d)=n n 平衡常数是表明化学反应限度的一种特征值。平衡常数越大,表示平衡常数是表明化学反应限度的一种特征值。平衡常数越大,表示正反应进行得越完全。平衡常数值与温度及反应式的书写形式有关,正反应进行得越完全。平衡常数值与温度及反应式的书写形式有关,但不随浓度、压力而变。但不随浓度、压力而变。第48页,本讲稿共86页2.书写平衡常数关系式的规则如果反应中有固体和纯液体参加,它们的浓度不应写在平衡关系式中 CaCO3(s)CaO(s)+CO2(g)Kc=c(CO2)稀溶液中进行的反应,如有水参加,水

29、的浓度也不必写在平衡关系式中 Cr2O72+H2O 2CrO42+2H第49页,本讲稿共86页Example Example 1 1 由实验测知,制备水煤气的反应由实验测知,制备水煤气的反应 C(s)+H C(s)+H2 2O(g)CO(g)+HO(g)CO(g)+H2 2(g)(g)在在1000K1000K下达平衡时,下达平衡时,C C(CO)=(CO)=C C(H(H2 2)=7.6)=7.6 1010-3-3molmolL L-1-1,C C(H(H2 2O)=4.6 O)=4.6 1010-3-3molmolL L-1-1;平衡分压分别为平衡分压分别为P P(CO)=(CO)=P P(

30、H(H2 2)=0.63)=0.63 10105 5PaPa,P P(H(H2 2O)=0.38O)=0.38 10105 5PaPa。试计算该反应的。试计算该反应的K Kc c,K Kp p。解:解:C(s)+H C(s)+H2 2O(g)CO(g)+HO(g)CO(g)+H2 2(g)(g)平衡浓度/(10-3molL-1)4.6 7.6 7.6平衡分压/(105Pa)0.38 0.63 0.63则第50页,本讲稿共86页3标准平衡常数(1)非标准状态下的摩尔吉布斯函数变 rGm(T)对于一化学反应:pP+qQ=yY+zZ,在恒温恒压、任意状态下的 rGm 与标准态 rGm 有如下关系:r

31、 Gm r Gm RT lnJJ 称为反应商第51页,本讲稿共86页如果 P,Q,Y,Z 均为气体如果均为溶液第52页,本讲稿共86页对化学反应 有 r Gm=r Gm+RT lnJ r Gm=RT lnK 或(2)标准平衡常数和标准摩尔自由能变化的关系当 r G m=0 反应达到平衡 所以有S2-(aq)+2H2O(l)H2S(g)+2OH-(aq)pP+qQ=yY+zZ第53页,本讲稿共86页Example 2Example 2 根据 Example 1给出的条件,计算1000K下制备水煤气反应的标准平衡常数。解:解:C(s)+H C(s)+H2 2O(g)CO(g)+HO(g)CO(g)

32、+H2 2(g)(g)第54页,本讲稿共86页例如:实验室中制取 Cl2(g)的反应必须注意:(1)各组分的浓度(或分压)应是平衡状态时的浓度(或分压);(2)平衡常数 K 与化学反应计量方程式有关;当反应物与生成物都相同的化学反应,化学反应计量方程式中计量数不同,其K 值也不同。第55页,本讲稿共86页例如:合成氨反应 K 1=(K 2)2=(K 3)3 显然第56页,本讲稿共86页合成氨氨分解反应的K(合)的K(分)互为倒数例如:第57页,本讲稿共86页3.4.1.3化学平衡的计算平衡转化率():平衡时已转化了的某反应物 的量与转化前的该反应物的量之比。注:化学平衡状态是反应进行的最大限度

33、,某反应物在给定条件下,平衡时具有最大的转化率。平衡转化率即指定条件下的最大转化率。第58页,本讲稿共86页Example 3Example 3 763.8 K时,H2(g)+I2(g)2HI(g)反应的Kc=45.7(1)如果反应开始时H2和I2的浓度均为1.00 molL-1,求反应达平衡时各物质的平衡浓度及I2的平衡转化率。(2)假定平衡时要求有90I2转化为HI,问开始时I2和H2应按怎样的浓度比混合?解解 (1 1)设达平衡时)设达平衡时c(HI)=x mol c(HI)=x mol L-1 H2(g)+I2(g)2HI(g)初始浓度/(molL-1)1.00 1.00 0-x/2

34、-x/2 +x1.00-x/2 1.00-x/2 x变化浓度/(molL-1)平衡浓度/(molL-1)第59页,本讲稿共86页x=1.54则平衡时各物质的浓度为:I2的平衡转化率 0.77/1.00 100%=77%(2)设开始时 c(H2)=x molL-1 c (I2)=y molL-1 H2(g)+I2(g)2HI(g)初始浓度/(molL-1)x y 0 x-0.90y y-0.90y 1.8y平衡浓度/(molL-1)第60页,本讲稿共86页则x/y=1.6/1.0第61页,本讲稿共86页3.5.1 浓度对化学平衡的影响3.5.2压力对化学平衡的影响3.5.3 温度对化学平衡的影响

35、3.5.4催化剂和化学平衡3.5.5平衡移动的总规律3.53.5化学平衡的移动化学平衡的移动第62页,本讲稿共86页3.5.1 浓度对化学平衡的影响正向移动正向移动平衡状态平衡状态逆向移动逆向移动v当当c c(反应物反应物)增大或增大或c c(生成物生成物)减小时,减小时,J J K K K ,平衡向逆向移动,平衡向逆向移动JlnRTGGmrmr+D=DqqqKRTGmrln-=Dqq=+-=DKJlnRTJlnRTKlnRTGmrqq=DKJKJlnRTGmr时,0第63页,本讲稿共86页Example 1Example 125oC时,反应Fe2+(aq)+Ag+(aq)Fe3+(aq)+A

36、g(s)的K=3.2。当当c c(Ag(Ag+)=1.00)=1.00 1010-2-2 mol molL L-1-1,c c(Fe(Fe2+2+)=0.100)=0.100 molmolL L-1-1,c c(Fe(Fe3+3+)=1.00)=1.00 1010-3-3 mol molL L-1-1时,反应向哪一方向进行?时,反应向哪一方向进行?平衡时,平衡时,AgAg+,FeFe2+2+,Fe Fe3+3+的浓度各为多少?的浓度各为多少?AgAg+的转化率为多少?的转化率为多少?如果保持如果保持AgAg+,FeFe3+3+的初始浓度不变,使的初始浓度不变,使c c(Fe(Fe2+2+)增大

37、至增大至0.300 0.300 molmolL L-1-1,求,求AgAg+的转化率。的转化率。第64页,本讲稿共86页 先计算反应商,判断反应方向先计算反应商,判断反应方向SoultionSoultionJ 1(Ag+)说明平衡向右移动说明平衡向右移动第67页,本讲稿共86页3.5.2 压力对化学平衡的影响部分物种分压的变化部分物种分压的变化 如果保持温度、体积不变,增大反应物的分压或减小生成物如果保持温度、体积不变,增大反应物的分压或减小生成物的分压,使的分压,使J J减小,导致减小,导致J J K K K,平衡向,平衡向逆向移动。逆向移动。第68页,本讲稿共86页对于反应 aA(g)+b

38、B(g)dD(g)+eE(g)aA(g)+bB(g)dD(g)+eE(g)T一定,令 n=(d+e)(a+b)总压力P总增大x(x 1)倍体积改变引起压力的变化体积改变引起压力的变化若反应物,产物都是固态或纯液态,平衡不移动若反应物,产物都是固态或纯液态,平衡不移动n=0,x n=1,J=K,平衡不移动平衡不移动第69页,本讲稿共86页n 0,i.n 0,x n 1,J K,平衡向逆方向移动,即向气体分子数减小的方向移动ii.n 0,x n 1,J 0(气体分子总数增加的反应)n K平衡向逆反应方向移动J K平衡向正反应方向移动均向气体分子总数减少的方向移动增大体积以降低体系总压力J K平衡向

39、逆反应方向移动均向气体分子总数增多的方向移动表 2.3(P51)压力对化学平衡的影响第70页,本讲稿共86页合成氨例如 增加压力,平衡向气体分子数较少的一方移动;降低压力,平衡向气体分子数较多的一方移动。第71页,本讲稿共86页在惰性气体存在下达到平衡后,再恒温压缩,n 0,平衡向气体分子数减小的方向移动,n 0,平衡不移动。对恒温恒容下已达到平衡的反应,引入惰性气体,反应物和生成物PB不变,J=K,平衡不移动平衡不移动对恒温恒压下已达到平衡的反应,引入惰性气体,总压不变,体积对恒温恒压下已达到平衡的反应,引入惰性气体,总压不变,体积增大,反应物和生成物分压减小,如果增大,反应物和生成物分压减

40、小,如果n 0,平衡向气体分子数增大的方向移动。惰性气体的影响(与反应无关的气体的引入)惰性气体的影响(与反应无关的气体的引入)1.反应H2O(g)H2(g)O2(g),在某温度和压力下达平衡,向此体系中通入惰性气体He(g),保持温度和压力不变,但使体积增大,此时()A.平衡左移B.平衡右移C.H2O(g),H2(g),O2(g)浓度均不变D.平衡保持不变第72页,本讲稿共86页Example Example 2 2某容器中充有N2O4(g)和2NO2(g)混合物,n(N2O4):n(NO2)=10:1。在308K,0.100MPa条件下,发生反应:N2O4(g)2NO2(g);K(308)

41、=0.315(1)计算平衡时各物质的分压(2)使该反应系统体积减小到原来的1/2,反应在308K,0.200 MPa条件下进行,平衡向何方移动?在新的平衡条件下,系统内各组分的分压改变了多少?N2O4(g)2NO2(g)开始时nB/mol 1.00 0.10平衡时nB/mol 1.00-x 0.10+2x平衡时PB/kPa Solution反应在恒温恒压条件下进行,以反应在恒温恒压条件下进行,以1molN1molN2 2OO4 4为计算基准。为计算基准。n n总总=1.10+x=1.10+x第73页,本讲稿共86页 压缩后压缩后P P总总200.0kPa200.0kPaJ K,平衡向逆方向移动

42、。第74页,本讲稿共86页 N2O4(g)2NO2(g)开始时nB/mol 1.00 0.10平衡时nB/mol 1.00-y 0.10+2y平衡时PB/kPa 平衡逆向移动第75页,本讲稿共86页3.5.3 温度对化学平衡的影响根据无相变时有第76页,本讲稿共86页 若反应在 T1 和 T2 时的平衡常数分别为 K1 和 K2,则近似地有:两式相减有:rHm 0(吸热反应)T升高时变小增大T降低时增大变小1.4.1第77页,本讲稿共86页平衡常数 K =126,判断反应在 800 K 时的平衡常数有什么变化?并说明温度升高对此反应的平衡的影响。例3:反应在 500 K 时,解:设 f Hm

43、不随温度变化fHm/(kJmol1)110.5 241.8 393.5 0 r Hm=(393.5)(110.5)(241.8)kJmol1=41.2 kJmol1 该正反应为放热反应,其逆反应则为吸热反应。从式(1.4.1)可定性判断温度升高,其平衡常数 K 是减小的,平衡向着减少生成物的方向移动。第78页,本讲稿共86页如果要进一步计算 800 K 时的 K ,可估算如下:K2=3.12 由计算知,温度升高,K 变小,表明温度升高平衡向生成反应物方向移动。第79页,本讲稿共86页的标准平衡常数,并简单说明它们在渗碳过程中的意义。例 4:化学热处理中高温气相渗碳中存在这样的反应:试分别计算

44、298.15 K 和 1 173 K 时解:(1)f Hm(298.15 K)/(kJmol1)110.5 0 393.5 Sm(298.15 K)/(Jmol1K1)197.7 5.74 213.8 r Hm(298.15 K)=(393.5)2(110.5)kJmol1 =172.5 kJmol1 r Sm(298.15 K)=(213.8+5.74)2197.7 Jmol1K1 =175.9 Jmol1K1第80页,本讲稿共86页298.15 K 时 r Gm=172.5 298.15 (175.9103)kJmol1ln K =r Gm(298.15 K)/RTK =1.101021

45、1 173 K 时:r Gm(1 173 K)=(172.5)1 173(175.9103)kJmol1=33.8 kJmol1=120.1 kJmol1=120.1103 Jmol1/(8.314 mol1K1 298.15 K)=48.45ln K =r Gm(1 173 K)/RT=(33.8)103 Jmol1/(8.314 Jmol1K11 173 K)=3.466 K 3.12102 第81页,本讲稿共86页3.5.4 催化剂对化学平衡的影响 催化剂不能使化学平衡发生移动催化剂不能使化学平衡发生移动 催化剂使正、逆反应的活化能减小相同的量,同等倍数增大正、逆反应速率常数,但不能改变

46、标准平衡常数,也不改变反应熵。催化剂只能缩短反应达到平衡的时间,不能改变平衡组成。第82页,本讲稿共86页3.5.53.5.5平衡移动的总规律平衡移动的总规律 18841884年,法国科学家年,法国科学家 Le Chatelier Le Chatelier 提出:提出:当体系达到平衡后,若改变平衡状态的任当体系达到平衡后,若改变平衡状态的任一条件(如浓度、压力、温度),平衡就向一条件(如浓度、压力、温度),平衡就向着能减弱其改变的方向移动。着能减弱其改变的方向移动。Le Chatelier Le Chatelier原理适用于处于平衡状态的体系,原理适用于处于平衡状态的体系,也适用于相平衡体系。

47、也适用于相平衡体系。Le Chatelier HLe Chatelier H,1850185019361936)法)法国无机化学家,巴黎大学教授。国无机化学家,巴黎大学教授。第83页,本讲稿共86页ExerciseExercise根据平衡移动原理,讨论下列反应:将Cl2、H2O、HCl、O2四种气体混合后,反应达平衡时,若进行下列各项操作,对平衡数值各有何影响(操作项目中没有注明的是指温度不变、体积不变)?操作项目 平衡数值(1)加O2 n(H2O)(2)加O2 n(HCl)(3)加O2 n(O2)(4)增大容器的体积 n(H2O)(5)减小容器的体积 n(Cl2)(6)减小容器的体积 P(C

48、l2)操作项目 平衡数值(7)减小容器的体积 K (8)升高温度 K (9)升高温度 P(HCl)(10)加催化剂 n(HCl)第84页,本讲稿共86页1.如果体系经过一系列变化,最后变到初始状态,则体系的()A.Q0 W=0 U=0 H=0 B.Q 0 W=0 U=0 H=0C.Q-W U=QW H=0 D.Q -W U=QW H=02.下列热力学函数中,能用于判断反应方向的是:()A.rH B.rS C.rG D.rU3.一般来说,温度升高,反应速率明显增加,主要原因是()A.分子碰撞几率增加 B.反应物压力增加 C.活化分子百分数增加 D.活化能降低4.反应A BD rHm0 Ea正为正

49、反应活化能,则()A.Ea正 Ea 逆 B.Ea正 Ea 逆 C.Ea正 Ea 逆 D.无法确定5.反应aAbB cC+dD达平衡标志,下列表达错误的是()A.各物质浓度不再改变 B.V正V逆 C.K =D.rGm 0 第85页,本讲稿共86页6.某温度下反应N2(g)3H2(g)2NH3(g)平衡常数为K1,则反应NH3(g)N2(g)H2(g)的K2 为()A.K1 B.K1 C.D.7.反应CO(g)H2O(g)CO2(g)+H2(g),为提高CO(g)转化率,可采取措施()A.增加CO(g)浓度B.增加H2O(g)浓度C.按1:1增加CO(g)和H2O(g)浓度D.以上方法均可以第86页,本讲稿共86页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com