同济大学机械工程专业英语翻译.docx

上传人:w**** 文档编号:63266705 上传时间:2022-11-24 格式:DOCX 页数:230 大小:141.74KB
返回 下载 相关 举报
同济大学机械工程专业英语翻译.docx_第1页
第1页 / 共230页
同济大学机械工程专业英语翻译.docx_第2页
第2页 / 共230页
点击查看更多>>
资源描述

《同济大学机械工程专业英语翻译.docx》由会员分享,可在线阅读,更多相关《同济大学机械工程专业英语翻译.docx(230页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、同济大学机械工程专业英语翻译书目 UNIT 1 ADVANCED ENGINEERING MATERIALS - 1 - UNIT 2 HEAT TREATMENT OF METALS - 6 - UNIT 3 CASTING PROCESSES - 15 - UNIT 4 FORGING PROCESSES - 21 - UNIT 5 POWDER METALLURGY - 26 - UNIT 6 INJECTION MOLDING - 32 - UNIT 7 METAL CUTTING - 38 - UNIT 8 GRINDING - 45 - UNIT 9 LAPPING POLISHI

2、NG - 49 - UNIT 10 SURFACE ENGINEERING - 51 - UNIT 12 DRILLING AND MILLING - 63 - UNIT 13 JIGS AND FIXTURES - 68 - UNIT 14 LIMIT AND TOLERANCES - 72 - 特种加工工艺(、) - 77 - UNIT 1 Advanced Engineering Materials Types of Materials材料的类型 Materials may be grouped in several ways. Scientists often classify mat

3、erials by their state: solid, liquid, or gas. They also separate them into organic (once living) and inorganic (never living) materials.材料可以按多种方法分类。科学家常依据状态将材料分为:固体、液体或气体。他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。For industrial purposes, materials are divided into engineering materials or nonengineering mat

4、erials. Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。那些用于加工制造并成为产品组成部分的就是工程材料。Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材

5、料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。Engineering materials may be further subdivided into: Metal Ceramics Composite Polymers, etc.工程材料还能进一步细分为:金属材料陶瓷材料复合材料 聚合材料,等等。 Metals and Metal Alloys 金属和金属合金 Metals are elements that generally have good electrical and thermal conductivity. Many metals have hi

6、gh strength, high stiffness, and have good ductility. 金属就是通常具有良好导电性和导热性的元素。很多金属具有高强度、高刚性以及良好的延展性。 Some metals, such as iron, cobalt and nickel, are magnetic. At low temperatures, some metals and intermetallic compounds become superconductors.某些金属能被磁化,例如铁、钴和镍。在极低的温度下,某些金属和金属化合物能转变成超导体。What is the dif

7、ference between an alloy and a pure metal? Pure metals are elements which come from a particular area of the periodic table. Examples of pure metals include copper in electrical wires and aluminum in cooking foil and beverage cans. 合金与纯金属的区分是什么?纯金属是取自元素周期表中特定位置的元素。例如电线中的铜和制造烹饪箔及饮料罐的铝。Alloys contain

8、more than one metallic element. Their properties can be changed by changing the elements present in the alloy. Examples of metal alloys include stainless steel which is an alloy of iron, nickel, and chromium; and gold jewelry which usually contains an alloy of gold and nickel.合金则包含不止一种金属元素。合金的性质能通过变

9、更其中元素的存在而变更。金属合金的例子有:不锈钢是一种铁、镍和铬的合金,以及金饰品通常含有金镍合金。Why are metals and alloys used? Many metals and alloys have high densities and are used in applications which require a high mass-to-volume ratio. 为什么要运用金属和合金?很多金属和合金都具有高密度,因此被用在须要较高质量体积比的场合。Some metal alloys, such as those based on aluminum, have lo

10、w densities and are used in aerospace applications for fuel economy. Many alloys also have high fracture toughness, which means they can withstand impact and are durable. 某些金属合金,例如铝基合金,其密度低,可用于航空航天以节约燃料。很多合金还具有高断裂韧性,这意味着它们能经得起冲击并且是耐用的。What are some important properties of metals? Density is defined

11、as a materials mass divided by its volume. Most metals have relatively high densities, especially compared to polymers. 金属有哪些重要特性?密度定义为材料的质量与其体积之比。大多数金属密度相对较高,尤其是与聚合物相比较而言。Materials with high densities often contain atoms with high atomic numbers, such as gold or lead. However, some metals such as a

12、luminum or magnesium have low densities, and are used in applications that require other metallic properties but also require low weight.高密度材料通常由较大原子序数原子构成,例如金或铅。然而,诸如铝或镁之类的一些金属则具有低密度,并被用于既须要金属特性又要求重量轻的场合。Fracture toughness can be described as a materials ability to avoid fracture, especially when a

13、 flaw is introduced. Metals can generally contain nicks and dents without weakening very much, and are impact resistant. A football player counts on this when he trusts that his facemask wont shatter.断裂韧性可以描述为材料防止断裂特殊是出现缺陷时不断裂的实力。金属一般能在有缺口和凹痕的状况下不显著减弱,并且能反抗冲击。橄榄球运动员据此信任他的面罩不会裂成碎片。Plastic deformation

14、 is the ability of bend or deform before breaking. As engineers, we usually design materials so that they dont deform under normal conditions. You dont want your car to lean to the east after a strong west wind. 塑性变形就是在断裂前弯曲或变形的实力。作为工程师,设计时通常要使材料在正常条件下不变形。没有人情愿一阵剧烈的西风过后自己的汽车向东倾斜。However, sometimes w

15、e can take advantage of plastic deformation. The crumple zones in a car absorb energy by undergoing plastic deformation before they break.然而,有时我们也能利用塑性变形。汽车上压皱的区域在它们断裂前通过经验塑性变形来汲取能量。The atomic bonding of metals also affects their properties. In metals, the outer valence electrons are shared among al

16、l atoms, and are free to travel everywhere. Since electrons conduct heat and electricity, metals make good cooking pans and electrical wires. 金属的原子连结对它们的特性也有影响。在金属内部,原子的外层阶电子由全部原子共享并能到处自由移动。由于电子能导热和导电,所以金属适合做好的烹饪锅和电线。It is impossible to see through metals, since these valence electrons absorb any ph

17、otons of light which reach the metal. No photons pass through.因为这些阶电子汲取到达金属的光子,所以透过金属不行能看得见。没有光子能通过金属。Alloys are compounds consisting of more than one metal. Adding other metals can affect the density, strength, fracture toughness, plastic deformation, electrical conductivity and environmental degra

18、dation. 合金是由一种以上金属组成的混合物。加一些其它金属能影响密度、强度、断裂韧性、塑性变形、导电以及耐环境退化等性能。For example, adding a small amount of iron to aluminum will make it stronger. Also, adding some chromium to steel will slow the rusting process, but will make it more brittle. 例如,往铝里加少量铁可使其更强。同样,在钢里加一些铬能减缓它的生锈过程,但也将使它较脆。 Ceramics and Gl

19、asses陶瓷和玻璃 A ceramic is often broadly defined as any inorganic nonmetallic material By this definition, ceramic materials would also include glasses; however, many materials scientists add the stipulation that “ceramic” must also be crystalline.陶瓷通常被概括地定义为无机的非金属材料。照此定义,陶瓷材料也应包括玻璃;然而很多材料科学家添加了“陶瓷”必需同

20、时是晶体物组成的约定。 A glass is an inorganic nonmetallic material that does not have a crystalline structure. Such materials are said to be amorphous.玻璃是没有晶体状结构的无机非金属材料。这种材料被称为非结晶质材料。 Properties of Ceramics and Glasses陶瓷和玻璃的特性 Some of the useful properties of ceramics and glasses include high melting tempera

21、ture, low density, high strength, stiffness, hardness, wear resistance, and corrosion resistance.高熔点、低密度、高强度、高刚性、高硬度、高耐磨性和抗腐蚀性是陶瓷和玻璃的一些有用特性。 Many ceramics are good electrical and thermal insulators. Some ceramics have special properties: some ceramics are magnetic materials; some are piezoelectric m

22、aterials; and a few special ceramics are superconductors at very low temperatures. Ceramics and glasses have one major drawback: they are brittle.很多陶瓷都是电和热的良绝缘体。某些陶瓷还具有一些特别性能:有些是磁性材料,有些是压电材料,还有些特别陶瓷在极低温度下是超导体。陶瓷和玻璃都有一个主要的缺点:它们简单破裂。Ceramics are not typically formed from the melt. This is because most

23、 ceramics will crack extensively (i.e. form a powder) upon cooling from the liquid state. 陶瓷一般不是由熔化形成的。因为大多数陶瓷在从液态冷却时将会大量地破裂(即形成粉末)。Hence, all the simple and efficient manufacturing techniques used for glass production such as casting and blowing, which involve the molten state, cannot be used for t

24、he production of crystalline ceramics. Instead, “sintering” or “firing” is the process typically used. 因此,全部用于玻璃生产的简洁有效的诸如浇铸和吹制这些涉及熔化的技术都不能用于由晶体物组成的陶瓷的生产。作为替代,一般采纳“烧结”或“焙烧”工艺。In sintering, ceramic powders are processed into compacted shapes and then heated to temperatures just below the melting poin

25、t. At such temperatures, the powders react internally to remove porosity and fully dense articles can be obtained. 在烧结过程中,陶瓷粉末先挤压成型然后加热到略低于熔点温度。在这样的温度下,粉末内部起反应去除孔隙并得到非常致密的物品。An optical fiber contains three layers: a core made of highly pure glass with a high refractive index for the light to travel,

26、 a middle layer of glass with a lower refractive index known as the cladding which protects the core glass from scratches and other surface imperfections, and an out polymer jacket to protect the fiber from damage.光导纤维有三层:核心由高折射指数高纯光传输玻璃制成,中间层为低折射指数玻璃,是爱护核心玻璃表面不被擦伤和完整性不被破坏的所谓覆层,外层是聚合物护套,用于爱护光导纤维不受损。

27、In order for the core glass to have a higher refractive index than the cladding, the core glass is doped with a small, controlled amount of an impurity, or dopant, which causes light to travel slower, but does not absorb the light. 为了使核心玻璃有比覆层大的折射指数,在其中掺入微小的、可控数量的能减缓光速而不会汲取光线的杂质或搀杂剂。Because the refr

28、active index of the core glass is greater than that of the cladding, light traveling in the core glass will remain in the core glass due to total internal reflection as long as the light strikes the core/cladding interface at an angle greater than the critical angle. 由于核心玻璃的折射指数比覆层大,只要在全内反射过程中光线照耀核心

29、/覆层分界面的角度比临界角大,在核心玻璃中传送的光线将仍保留在核心玻璃中。The total internal reflection phenomenon, as well as the high purity of the core glass, enables light to travel long distances with little loss of intensity.全内反射现象与核心玻璃的高纯度一样,使光线几乎无强度损耗传递长距离成为可能。 Composites复合材料 Composites are formed from two or more types of mate

30、rials. Examples include polymer/ceramic and metal/ceramic composites. Composites are used because overall properties of the composites are superior to those of the individual components.复合材料由两种或更多材料构成。例子有聚合物/陶瓷和金属/陶瓷复合材料。之所以运用复合材料是因为其全面性能优于组成部分单独的性能。 For example: polymer/ceramic composites have a gr

31、eater modulus than the polymer component, but arent as brittle as ceramics.Two types of composites are: fiber-reinforced composites and particle-reinforced composites.例如:聚合物/陶瓷复合材料具有比聚合物成分更大的模量,但又不像陶瓷那样易碎。复合材料有两种:纤维加强型复合材料和微粒加强型复合材料。 Fiber-reinforced Composites纤维加强型复合材料 Reinforcing fibers can be mad

32、e of metals, ceramics, glasses, or polymers that have been turned into graphite and known as carbon fibers. Fibers increase the modulus of the matrix material. 加强纤维可以是金属、陶瓷、玻璃或是已变成石墨的被称为碳纤维的聚合物。纤维能加强基材的模量。 The strong covalent bonds along the fibers length give them a very high modulus in this direct

33、ion because to break or extend the fiber the bonds must also be broken or moved.沿着纤维长度有很强结合力的共价结合在这个方向上赐予复合材料很高的模量,因为要损坏或拉伸纤维就必需破坏或移除这种结合。Fibers are difficult to process into composites, making fiber-reinforced composites relatively expensive.把纤维放入复合材料较困难,这使得制造纤维加强型复合材料相对昂贵。Fiber-reinforced composit

34、es are used in some of the most advanced, and therefore most expensive sports equipment, such as a time-trial racing bicycle frame which consists of carbon fibers in a thermoset polymer matrix. 纤维加强型复合材料用于某些最先进也是最昂贵的运动设备,例如计时赛竞赛用自行车骨架就是用含碳纤维的热固塑料基材制成的。Body parts of race cars and some automobiles are

35、 composites made of glass fibers (or fiberglass) in a thermoset matrix. 竞赛用汽车和某些机动车的车体部件是由含玻璃纤维(或玻璃丝)的热固塑料基材制成的。Fibers have a very high modulus along their axis, but have a low modulus perpendicular to their axis. Fiber composite manufacturers often rotate layers of fibers to avoid directional varia

36、tions in the modulus.纤维在沿着其轴向有很高的模量,但垂直于其轴向的模量却较低。纤维复合材料的制造者往往旋转纤维层以防模量产生方向改变。 Particle-reinforced composites微粒加强型复合材料 Particles used for reinforcing include ceramics and glasses such as small mineral particles, metal particles such as aluminum, and amorphous materials, including polymers and carbon

37、 black.用于加强的微粒包含了陶瓷和玻璃之类的矿物微粒、铝之类的金属微粒以及包括聚合物和碳黑的非结晶质微粒。 Particles are used to increase the modulus of the matrix, to decrease the permeability of the matrix, to decrease the ductility of the matrix. An example of particle-reinforced composites is an automobile tire which has carbon black particles

38、in a matrix of polyisobutylene elastomeric polymer.微粒用于增加基材的模量、削减基材的渗透性和延展性。微粒加强型复合材料的一个例子是机动车胎,它就是在聚异丁烯人造橡胶聚合物基材中加入了碳黑微粒。 Polymers聚合材料 A polymer has a repeating structure, usually based on a carbon backbone. The repeating structure results in large chainlike molecules. Polymers are useful because t

39、hey are lightweight, corrosion resistant, easy to process at low temperatures and generally inexpensive.聚合物具有一般是基于碳链的重复结构。这种重复结构产生链状大分子。由于重量轻、耐腐蚀、简单在较低温度下加工并且通常较便宜,聚合物是很有用的。 Some important characteristics of polymers include their size (or molecular weight), softening and melting points, crystallini

40、ty, and structure. The mechanical properties of polymers generally include low strength and high toughness. Their strength is often improved using reinforced composite structures.聚合材料具有一些重要特性,包括尺寸(或分子量)、软化及熔化点、结晶度和结构。聚合材料的机械性能一般表现为低强度和高韧性。它们的强度通常可采纳加强复合结构来改善。 Important Characteristics of Polymers聚合材

41、料的重要特性 Size. Single polymer molecules typically have molecular weights between 10,000 and 1,000,000g/molthat can be more than 2,000 repeating units depending on the polymer structure! 尺寸:单个聚合物分子一般分子量为10,000到1,000,000g/mol之间,详细取决于聚合物的结构这可以比2,000个重复单元还多! The mechanical properties of a polymer are sign

42、ificantly affected by the molecular weight, with better engineering properties at higher molecular weights.聚合物的分子量极大地影响其机械性能,分子量越大,工程性能也越好。 Thermal transitions. The softening point (glass transition temperature) and the melting point of a polymer will determine which it will be suitable for applicat

43、ions. These temperatures usually determine the upper limit for which a polymer can be used.热转换性:聚合物的软化点(玻璃状转化温度)和熔化点确定了它是否适合应用。这些温度通常确定聚合物能否运用的上限。For example, many industrially important polymers have glass transition temperatures near the boiling point of water (100, 212), and they are most useful

44、for room temperature applications. Some specially engineered polymers can withstand temperatures as high as 300(572).例如,很多工业上的重要聚合物其玻璃状转化温度接近水的沸点(100, 212),它们被广泛用于室温下。而某些特殊制造的聚合物能经受住高达300(572)的温度。Crystallinity. Polymers can be crystalline or amorphous, but they usually have a combination of crystall

45、ine and amorphous structures (semi-crystalline).结晶度:聚合物可以是晶体状的或非结晶质的,但它们通常是晶体状和非结晶质结构的结合物(半晶体)。Interchain interactions. The polymer chains can be free to slide past one another (thermo-plastic) or they can be connected to each other with crosslinks (thermoset or elastomer). Thermo-plastics can be re

46、formed and recycled, while thermosets and elastomers are not reworkable.链间的相互作用:聚合物的分子链可以自由地彼此滑动(热可塑性)或通过交键相互连接(热固性或弹性)。热可塑性材料可以重新形成和循环运用,而热固性与弹性材料则是不能再运用的。Intrachain structure. The chemical structure of the chains also has a tremendous effect on the properties. Depending on the structure the polyme

47、r may be hydrophilic or hydrophobic (likes or hates water), stiff or flexible, crystalline or amorphous, reactive or unreactive.链内结构:分子链的化学结构对性能也有很大影响。依据各自的结构不同,聚合物可以是亲水的或憎水的(喜爱或厌烦水)、硬的或软的、晶体状的或非结晶质的、易起反应的或不易起反应的。 UNIT 2 Heat Treatment of Metals The understanding of heat treatment is embraced by the

48、 broader study of metallurgy. Metallurgy is the physics, chemistry, and engineering related to metals from ore extraction to the final product. 对热处理的理解包含于对冶金学较广泛的探讨。冶金学是涉及金属从矿石提炼到最终产物的物理学、化学和工程学总称。 Heat treatment is the operation of heating and cooling a metal in its solid state to change its physic

49、al properties. According to the procedure used, steel can be hardened to resist cutting action and abrasion, or it can be softened to permit machining. 热处理是将金属在固态加热和冷却以变更其物理性能的操作。按所采纳的步骤,钢可以通过硬化来反抗切削和磨损,也可以通过软化来允许机加工。With the proper heat treatment internal stresses may be removed, grain size reduced, toughness increased, or a hard surface produced on a ductile interior. The analysis

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com