高聚物的结构精选文档.ppt

上传人:石*** 文档编号:52093489 上传时间:2022-10-21 格式:PPT 页数:44 大小:2.75MB
返回 下载 相关 举报
高聚物的结构精选文档.ppt_第1页
第1页 / 共44页
高聚物的结构精选文档.ppt_第2页
第2页 / 共44页
点击查看更多>>
资源描述

《高聚物的结构精选文档.ppt》由会员分享,可在线阅读,更多相关《高聚物的结构精选文档.ppt(44页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、高聚物的结构本讲稿第一页,共四十四页第五章高聚物的结构第五章高聚物的结构第第2题题解答:解答:由于高弹态对成型加工不利,因此,一般情况下,对结晶态高聚物而言要严格控制相对分子质量,防止很大造成的不良影响。12形变%TgTmTfT/1相对分子质量较小2相对分子质量很大结晶态高聚物的物理状态结晶态高聚物的物理状态玻璃态黏流态黏流态玻璃态 高弹态M较小较小M很大很大本讲稿第二页,共四十四页第五章高聚物的结构第五章高聚物的结构第第3题题解答:解答:玻璃化温度的玻璃化温度的定义定义高聚物分子链段开始运动或冻结的温度。玻璃化温度的使用价值玻璃化温度的使用价值玻璃温度是非晶态高聚物作为塑料使用的最高温度;是

2、作为橡胶使用的最低温度。(一般用Tg表示)影响玻璃化温度的因素影响玻璃化温度的因素主链柔性对玻璃温度的影响主链柔性对玻璃温度的影响对主链柔性有影响的因素,都影响玻璃化温度。为柔性越大,其玻璃化温度越低。分子间作用力对玻璃化温度的影响分子间作用力对玻璃化温度的影响分子间作用力越大,其玻璃化温度越高。相对分子质量对玻璃化温度的影响相对分子质量对玻璃化温度的影响玻璃化温度随高聚物平均相对分子质量的增加而增大,但当平均相对分子质量增加到一定程度时,玻璃化温度趋于某一定值。本讲稿第三页,共四十四页第五章高聚物的结构第五章高聚物的结构第第3题题续解:共聚对玻璃化温度的影响共聚对玻璃化温度的影响共聚可以调整

3、高聚物的玻璃化温度。交联对玻璃化温度的影响交联对玻璃化温度的影响适度交联,可以提高玻璃化温度。增塑剂对玻璃化温度的影响增塑剂对玻璃化温度的影响随着增塑剂加入量的增加,玻璃化温度下降。外界条件的影响外界条件的影响外力大小外力大小对高聚物施加的外力越大,玻璃化温度下降越低。外力作用时间外力作用时间时间越长,玻璃化温度越低。升温速度升温速度升温速度越快,玻璃化温度越高。玻璃化温度的测定玻璃化温度的测定原理:原理:利用高聚物在发生玻璃化转变的同时各种物理参数均发生变化的特性进行测定。Tg12345T物性参数比体积膨胀率热容导热率折光率本讲稿第四页,共四十四页第五章高聚物的结构第五章高聚物的结构第第3题

4、题续解:常用的玻璃化温度测定方法热-机械曲线法膨胀计法电性能法DTA法DSC法本讲稿第五页,共四十四页第五章高聚物的结构第五章高聚物的结构第第4题题解答:解答:熔点的熔点的定义定义平衡状态下晶体完全消失的温度。熔点的使用价值熔点的使用价值是晶态高聚物用于塑料和纤维时的最高使用温度,又是它们的耐热温度和成型加工的最低温度。小分子结晶与高聚物结晶熔融过程的异同点小分子结晶与高聚物结晶熔融过程的异同点小分子结晶高聚物结晶熔融过程从晶相转变为液相(折线)从晶相转变为液相(极慢升温为折线)特点热力学函数有突变突变熔化的温度范围窄(窄(Tm0.1)熔点与两相含量无关无关熔点高低与结晶过程无关无关热力学函数

5、有突变突变熔化的温度范围宽(宽(Tm2)熔点与两相含量有关有关熔点高低与结晶过程有关有关本讲稿第六页,共四十四页第五章高聚物的结构第五章高聚物的结构第第4题题解答:解答:影响熔点的因素影响熔点的因素增大分子间的作用力越大(方法是在高分子主链或侧基上引入极性基团)为熔点越高。降低柔性,增加刚性(方法是在主链上引入苯环,降低体系混乱程度),熔点越高。熔点的测定方法熔点的测定方法同玻璃化温度的测定方法本讲稿第七页,共四十四页第五章高聚物的结构第五章高聚物的结构第第5题题解答:解答:黏流温度的黏流温度的定义定义非晶态高聚物熔化后发生黏性流动的温度。黏流温度的使用价值黏流温度的使用价值是非晶态高聚物成型

6、加工的最低温度。影响黏流温度的因素影响黏流温度的因素柔性、刚性,Tf;平均相对分子质量,内摩擦力,Tf。影响黏流温度的测定影响黏流温度的测定采用热-机械曲线法、DTA法等测定方法。本讲稿第八页,共四十四页第五章高聚物的结构第五章高聚物的结构第第6题题解答:解答:软化温度的定义软化温度的定义在某一指定试样大小、升温速度、施加外力方式等条件下,测定高聚物试样达到一定形变时的温度。软化温度的使用价值软化温度的使用价值是产品质量控制、成型加工和应用的参数之一。软化温度的表示方法软化温度的表示方法马丁耐热温度马丁耐热温度测试条件:测试条件:升温速度10/12min专用设备:专用设备:马丁耐热试验箱 悬臂

7、弯曲力5MPa温度确定长240mm横杆项指示下降6cm所对应的温度维卡耐热温度维卡耐热温度测试条件:测试条件:试样10mm10mm3mm升温速度(50.5)/6min或(121)/12min 圆柱压针截面积1mm2本讲稿第九页,共四十四页第五章高聚物的结构第五章高聚物的结构第第6题题续解:压入负荷5kg或1kg温度确定圆柱形针压入1mm所对应的温度弯曲负荷热变形温度(简称热变形温度)弯曲负荷热变形温度(简称热变形温度)测试条件:测试条件:试样 120mm313mm15mm 升温速度(121)/6min 弯曲应力1.85MPa(或0.46MPa静弯曲负荷)温度确定试样达到规定弯曲时所对应的温度本

8、讲稿第十页,共四十四页第五章高聚物的结构第五章高聚物的结构第第7题题解答:解答:1、外力(负荷)、外力(负荷)对材料所施加的使材料形变的力。如拉力、压力、剪切、扭转、弯曲等。2、内力、内力指材料为反抗外力,使材料保持原状所具有的力。如回缩力。3、形变、形变一般是指材料爱力后产生的绝对形变值。如X、Y、Z等;相对形变值如X/X、Y/Y、Z/Z等。4、应力(、应力()单位面积所受的力。用 表示。5、应变(、应变(或或)在应力作用下单位长度(或单位面积或单位体积)所发生的形变。6、强度、强度在一定条件下,材料所能承受的最大应力。7、泊松比、泊松比 本讲稿第十一页,共四十四页第五章高聚物的结构第五章高

9、聚物的结构第第7题题续解:8、模量(、模量(E)引起单位应变所需要的应力,形式有拉伸模量、压缩模量、剪切模量、扭转模量、弯曲模量等。9、柔量(、柔量(J)模量的倒数。10、拉伸强度、拉伸强度在规定温度、湿度和加载速度下,试样沿轴向方向拉伸直至被拉断为止,断裂前试样承受的最大载荷与试样截面积之比。11、挠曲强度、挠曲强度在规定条件下对标准试样施加静弯曲力矩,取试样断裂前的最大载荷计算的强度。12、抗冲击强度、抗冲击强度试样受冲击而破裂时的单体体积所吸收的能量。14、硬度、回弹性、韧性及疲劳、硬度、回弹性、韧性及疲劳本讲稿第十二页,共四十四页第五章高聚物的结构第五章高聚物的结构第第8题题解答:解答

10、:(1)非晶态高聚物的应力)非晶态高聚物的应力-应变曲线应变曲线拉伸的工业应用拉伸的工业应用为增加纤维的拉伸强度而进行单轴拉伸;为增加塑料薄膜的强度而进行双轴拉伸。线型线型非晶态高聚物的应力非晶态高聚物的应力-应变曲线应变曲线拉伸过程高分子链的三种运动情况:弹性形变(开始弹性形变(开始A点)点)应变随应力的增加而增大,服从虎克定律,具有普弹性能;运动单元为键长、键角。对应为弹性伸长极限。强迫高弹形变(强迫高弹形变(A点点B点)点)中间经过屈服点Y,对应的表示高聚物材料对抗永久形变的能力;形变能力300%1000%,并且可逆;运动单元为链段。应变应力AYBA弹性极限;Y屈服点;B断裂点本讲稿第十

11、三页,共四十四页第五章高聚物的结构第五章高聚物的结构第第8题题续解:黏流形变(黏流形变(B点后)点后)形变为不可逆(永久形变);运动单元为链段、大分子链。非晶态高聚物的六种应力非晶态高聚物的六种应力-应变曲线与使用的关系应变曲线与使用的关系可以作为工程塑料的高聚物可以作为工程塑料的高聚物材料硬而脆材料硬而脆刚性制品,不宜冲击,能承受静压力典型实例:典型实例:酚醛塑料制品材料硬而强材料硬而强高模量高抗张,断裂伸长小或无屈服典型实例:典型实例:PVC硬制品本讲稿第十四页,共四十四页第五章高聚物的结构第五章高聚物的结构第第8题题续解:可以作为形变较大的材料可以作为形变较大的材料材料硬而韧材料硬而韧高

12、模量高抗张,断裂伸长大,有屈服典型实例:典型实例:聚碳酸酯制品材料软而韧材料软而韧低模量低屈服,断裂伸长率及强度大典型实例:典型实例:硫化橡胶、LDPE制品材料软而弱材料软而弱低模量低强度,断裂伸长率中等典型实例:典型实例:未硫化天然橡胶本讲稿第十五页,共四十四页第五章高聚物的结构第五章高聚物的结构第第8题题续解:无使用价值的材料无使用价值的材料材料弱而脆材料弱而脆一般为低聚物本讲稿第十六页,共四十四页第五章高聚物的结构第五章高聚物的结构第第9题题解答:解答:(2)未取向的晶态高聚物的应力)未取向的晶态高聚物的应力-应变曲线应变曲线整个曲线有两个转折点,划分为三段:曲线的初始段(OY),应力随

13、应变直线增加,试样均匀伸长;达到屈服点(Y)后,试样突然在某处或几处变细,出现“细颈”,由此开始拉伸的第二阶段细颈发展阶段(ND),这一阶段的特点是伸长不断增加而应力几乎不变或增大不多,直至整个试样全部变细(D点);第三阶段(DB)是已被细颈的试样重新被均匀拉伸应力随应变增加,直至断裂点B为止。OYNDBOY段段 YN段段ND段段DB段段D点点OY段段YN段段ND段段D点点DB段段试样形状变化试样形状变化本讲稿第十七页,共四十四页第五章高聚物的结构第五章高聚物的结构第第10题题解答:解答:相对分子质量及分布对强度的影响相对分子质量及分布对强度的影响规律:规律:强度随相对分子质量的增大而增加,分

14、布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。低分子掺合物对强度的影响低分子掺合物对强度的影响规律:规律:低分子物质的加入降低强度。实例实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。交联对强度的影响交联对强度的影响规律:规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。实例实例橡胶的适度交联。结晶对强度的影响结晶对强度的影响规律:规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。本讲稿第十八页,共四十四页第五章高聚物的结构第五章高聚

15、物的结构第第10题题续解:实例实例缓慢降温有利形成大球晶,淬火有利形成小球晶。取向对强度的影响取向对强度的影响规律:规律:取向能增加取向方向上材料的强度。填充物对强度的影响填充物对强度的影响规律:适当填充活性填料增加强度。实例橡胶填充炭黑;玻璃钢填充玻璃纤维。材料中缺陷对强度的影响材料中缺陷对强度的影响缺陷指向与危害:杂质、不塑化树脂粒、气泡、降解物等造成微小裂纹,当材料受到外力作用时,在缺陷处产生应力集中,致使材料断裂、破坏。本讲稿第十九页,共四十四页第五章高聚物的结构第五章高聚物的结构第第11题题解答:解答:松弛过程(现象)松弛过程(现象)是高聚物从一种平衡状态过渡到另外一种平衡状态的过程

16、。在松弛过程中,高聚物处于不平衡的过渡。常见的高聚物松弛过程常见的高聚物松弛过程高聚物的松弛过程应力松弛(relaxation of stress)蠕变(creep)是在保持高聚物材料形变一定的情况下,应力随时间的增加而逐渐减小的现象。是在一定的应力作用下,形变随时间的增加而增大的现象。本讲稿第二十页,共四十四页第五章高聚物的结构第五章高聚物的结构第第11题题续解:高聚物的松弛过程直接影响高聚物材料尺寸稳定性;但高聚物材料成型加工过程中需要通过松弛过程将各种应力松弛掉,防止应力集中而影响使用。松弛过程的本质:松弛过程的本质:是链段和分子链运动的结果。应力松弛曲线与应力松弛示意图应力松弛曲线与应

17、力松弛示意图应力松弛曲线与应力松弛示意图应力松弛曲线与应力松弛示意图 蠕变曲线蠕变曲线t停止型减小型受力形变维持不变应力松弛应力松弛示意图应力松弛示意图应力松弛曲线示意图应力松弛曲线示意图增长型停止型稳变型t蠕变曲线示意图本讲稿第二十一页,共四十四页第五章高聚物的结构第五章高聚物的结构第第12题题解答:解答:影响强度的因素:影响强度的因素:强度随相对分子质量的增高而增大强度随相对分子质量的增高而增大;相对分子质量分布的影响,主要考虑低聚物部分,低聚物部分增多,就会导致受力时的分子间断裂,使强度降低。加入低分子掺合物低分子掺合物对高聚物材料强度的影响,类似于相对分子质量分布中的低聚物,一般会使材

18、料的强度下降。交联能使高聚物材料的相对分子质量增加交联能使高聚物材料的相对分子质量增加,也增加了分子间的牢固连结作用,因此,一般有利于强度的提高。但交联要适度,过多交联时,使材料在受到外力时,容易产生局部应力集中时,也会造成强度下降。结晶的影响主要取决于结晶度、晶粒大小和晶体的结构。一般情况,随着结随着结晶度的增加,高聚物的屈服应力、强度、模量和硬度等提高;而断裂伸长率和冲晶度的增加,高聚物的屈服应力、强度、模量和硬度等提高;而断裂伸长率和冲击韧性则下降。击韧性则下降。结晶使高聚物变硬变脆。球晶的结构对强度的影响超过结晶度所产生的影响,它的大小对聚合物的力学性能,以及物理和光学性能起重要作用。

19、大的球晶一般能使高聚物的断裂伸长率和韧性降低;小球晶能造成材料的抗张强度、模量、断裂伸长和韧性提高。本讲稿第二十二页,共四十四页第五章高聚物的结构第五章高聚物的结构第第12题题续解:取向取向对高聚物的所有力学性能都有影响,最突出的是取向产生各向异性和取向方向的强度。向高聚物材料中添加活性填料活性填料,如补强剂和增强剂等可以提高分子间的结合力,防止裂缝的增长。高聚物材料的实际测试强度要比理论上计算强度小得多。其原因在于材料中或多或少地存在缺陷缺陷,如含有杂质、塑化不透的树脂粒、原料中因水分或空气等而形成的气泡、加工温度太高导致的焦化或降解物等等。这些缺陷往往用眼睛是看不见的,但对性质特别是对冲击

20、强度的影响是巨大的。在受到应力时,缺陷便成为应力集中处,使该处的应力比平均应力大几十至几百倍,因而,断裂就从该处发生和发展,导致整个材料的破坏。本讲稿第二十三页,共四十四页第五章高聚物的结构第五章高聚物的结构第第13题题解答:解答:tttttttttDDD应变与时间的关系应变与应力的关系类型编号123456789特点符合虎克定律的理想弹性体不符合虎克定律的理想弹性体能完全回复的非理想弹性体高弹体具塑性的非理想弹性体非理想塑性体理想塑性体或称宾汉流体具粘弹性的非牛顿流体非牛顿粘性流体牛顿流体DDD111本讲稿第二十四页,共四十四页第五章高聚物的结构第五章高聚物的结构第第13题题续解:如上表所示,

21、共分为九种类型。其中九种类型。其中4、5、6、7是属于高聚物材料是属于高聚物材料。影响黏度的因素:影响黏度的因素:粘度是液体流动时内磨擦力的表征。对刚性高分子链,其链段的尺寸趋近于整个大分子链的大小,因而平均相对分子质量越大,流动时的有效体积越大,即粘度越大,流动性越小。对柔性高分子链,在受热时,链段运动是无规则的,但在外力作用下,链段运动主要沿着力场方向,因而发生流动。相对分子质量越大,链段数目就越多,各链段都向同一方向流动,所需的活化能也就越大,故表观粘度就大。相对分子质量分布情况对流动性也有一定影响。通常分布较窄的高聚物与其分布较宽而平均相对分子质量相等的相比,前者在流动性行为上要较多地

22、接近牛顿流体,但粘度以后者较小,这是由于低相对分子质量部分对高相对分子质量部分起了增塑作用。本讲稿第二十五页,共四十四页第五章高聚物的结构第五章高聚物的结构第第13题题续解:当温度较高(Tg100)时,高聚物的表观粘流活化能基本恒定;但当温度较低(Tg100)时,高聚物的表观粘流活化能并不恒定,而是随温度的下降而急剧增大。其原因可以从两点考虑,一是链段在跃迁时,能否克服能垒;二是否存在能够接纳它的空穴。当温度较高时,由于高聚物内部的自由体积较大,后一因素容易获得,因此跃迁仅仅取决于前一因素,这与一般活化过程相同,所以表观粘流活化能为恒定值。当温度较低时,由于自由体积减少,后一因素难以保证,从而

23、阻碍链段的跃迁,造成能垒的增高,使高聚物的表观粘流活化能随温度下降而增大。本讲稿第二十六页,共四十四页第五章高聚物的结构第五章高聚物的结构第第14题题解答:解答:高聚物熔体流动中的弹性效应是指高聚物熔体(粘弹性流体)在压力下从模具的模口被挤出时,料流立即膨胀,所得挤出物的横截面大于模口截面各的现象(又称出口膨胀现象)。是一种弹性后效应,也称巴拉斯效应。从分子链运动的观点来看,当管道内分子链处于高变切速率时,链段被迫舒展开来,这与高弹态受拉伸时分子链舒展的情况相似。此时链段间发生取向,熔体出现各向异性。当流道突然放大或从孔道中流出时,意味着大分子突然“自由化”,在流道中形成的高弹形变立即得以回复

24、,分子链又恢复到大体上无序的平衡状态,链间距离增大,以致流束发生膨胀。实践证明,当剪切速率增高时,流束的出口膨胀剧增,直到一最大值,然后又降下来。本讲稿第二十七页,共四十四页第五章高聚物的结构第五章高聚物的结构第第15题题解答:解答:熔融粘度(表观)的测定可以采用下面几种方法。毛细管粘度计法(包括熔融指数测定仪等)是测量在一定压力下液体自毛细管中流出来的速率;旋转式粘度法(包括悬锤杯式、锥板式或门尼粘度计等),是使一个圆体(筒、锥或盘)旋转在高聚物液体中。测量所需的力;落球式粘度计法,则是测量一圆球在高聚物液体中沉降的速率等。这些方法所测得的粘度都是在规定条件下的数值。都是比较熔体流动性最方便

25、的方法。考虑到高聚物成型加工的需要,下面简单介绍熔融指数测定方法。测定在熔融指数仪中进行(图548)。高聚物熔体试样在规定的温度和压力下,在一定时间内流过标准出料孔的重量,称为熔融指数MI,以g/10min表示。它可以作为热塑性树脂成型加工工艺条件的参数。熔融指数越高,表示流动性越好;MI与相对分子质量有关,相对分子质量越大,MI越小。本讲稿第二十八页,共四十四页第五章高聚物的结构第五章高聚物的结构第第16题题解答:解答:由于高聚物材料具有体积电阻率高(10161020cm)、介电常数小(小到2左右)、介质损耗低(低到104)、半导体等特殊优良的电性能,同时某些高聚物还具有优良的导电性能。加之

26、高聚物合成材料易得,成型加工方便,品种繁多,可按使用要求提供薄膜、管、板、带、丝、注塑品和挤出型材等产品选用。正是因为这些优良的电性能和指标和加工性能,使高聚物材料在电气工业方面,作为不可缺少的绝缘材料和介电材料广泛使用。从普通电线到电缆,从电机到各种仪表,从电容器到微型固体元件等,都离不开高聚物材料。本讲稿第二十九页,共四十四页第五章高聚物的结构第五章高聚物的结构第第17题题解答:解答:(1)高聚物在光学方面的应用)高聚物在光学方面的应用高聚物材料具有折射、反射、双折射、偏振、光散射等性能。但高聚物的光学性质受其结构的影响。高聚物材料是作为光导材料使用的。如无定型的聚甲基丙烯酸甲酯、聚苯乙烯

27、等。根据需要光导元件可以作成棒状、板状和其它需要的形状,主要用作光的传递和发光装饰材料。(2)高聚物在透气方面的应用)高聚物在透气方面的应用高聚物的透气性能主要体现在车胎、气球、包装薄膜及分离膜等方面的应用上。对透气性能的要求也视高聚物材料的用途而定,有的要求透气性越小越好(如车胎),有的要求透气性越大越好(如某些包装薄膜),有的要求有选择的透过某些气体或液体。尤其膜分离技术在海水淡化、污水处理、富氧气体、化学化工物料分离等诸多方面的研究与应用非常活跃。本讲稿第三十页,共四十四页第五章高聚物的结构第五章高聚物的结构第第18题题解答:解答:(1 1)高聚物热物理性能的范围)高聚物热物理性能的范围

28、高聚物材料的热物理性能主要包括高聚物材料的耐热性、比热容与焓的计算、导热率和热膨胀系数等。(2)应用)应用主要用于保温材料。本讲稿第三十一页,共四十四页第五章高聚物的结构第五章高聚物的结构第第19题题解答:解答:(1)非晶高聚物的溶解过程)非晶高聚物的溶解过程(2)结晶高聚物的溶解过程)结晶高聚物的溶解过程需要加热到熔点附近,其他与非晶高聚物的溶解过程相同。(3)溶解的关键)溶解的关键溶胀运动单元:溶剂分子部分链段运动单元:溶剂分子大部分链段少部分高分子链运动单元:溶剂分子所有链段所有高分子链溶胀无限溶胀本讲稿第三十二页,共四十四页第五章高聚物的结构第五章高聚物的结构第第20题题解答:解答:(

29、1)溶剂的选择)溶剂的选择极性相似原则极性相似原则 极性高聚物溶解于极性溶剂之中,非极性高聚物溶解于非性溶剂溶剂之中;极性大的高聚物溶解于极性大的溶剂之中,极性小的高聚物溶解于极性小的溶剂之中。溶剂化原则溶剂化原则 高聚物的溶胀和溶解与溶剂化的作用有关。所谓溶剂化作用是指溶质与溶剂接触时,溶剂分子对溶质分子相互产生作用,此作用大于溶质之间的分子内聚力,使溶质分子彼此分离而溶解于溶剂中的作用。极性溶剂分子和高聚物的极性基团相互吸引能产生溶剂化作用,使高聚物溶解。这种作用一般是指高分子上的酸性基团(或碱性基团)与溶剂分子上的碱性基团(或酸性基团)发生溶剂化作用而溶解。溶解度参数相近相溶原则溶解度参

30、数相近相溶原则|12|1.5 本讲稿第三十三页,共四十四页第五章高聚物的结构第五章高聚物的结构第第20题题续解:(2)高聚物稀溶液黏度的表示方法及相互之间的关系)高聚物稀溶液黏度的表示方法及相互之间的关系高聚物稀溶液黏度相对黏度(relative viscosity)增比黏度(specific viscosity)比浓黏度(reduced viscosity)特性黏度(intrinsic viscosity)本讲稿第三十四页,共四十四页第五章高聚物的结构第五章高聚物的结构第第20题题续解:(3)影响高聚物溶液黏度的因素)影响高聚物溶液黏度的因素高聚物在溶液中的状态,被高聚物分子束缚的自由溶剂分

31、子越多,体系黏度越大。高聚物稀溶液浓度与粘度的关系(线型关系)高聚物相对分子质量的影响 本讲稿第三十五页,共四十四页第五章高聚物的结构第五章高聚物的结构第第20题题续解:如果溶剂为良溶剂,则大分子链为自然松散状态,所以黏度较大;如果为不良溶剂,则大分子链为卷曲和紧缩状态,所以黏度降低。温度对黏度的影响,对不良溶剂而言,随着温度的升高,大分子线团趋向松散,所以黏度增加;而对良溶剂而言,由于线团已经松散,所以黏度对温度的依赖性较小,且随温度的升高而降低。本讲稿第三十六页,共四十四页第五章高聚物的结构第五章高聚物的结构第第21题题解答:解答:数均相对分子质量重均相对分子质量Z均相对分子质量黏均相对分

32、子质量多分散体系相互之间的关系:Z均重均黏均数均本讲稿第三十七页,共四十四页第五章高聚物的结构第五章高聚物的结构第第22题题解答:解答:(1)渗透压法测定高聚物相对分子质量的原理与过程)渗透压法测定高聚物相对分子质量的原理与过程原理:原理:所用仪器为渗透压计,测试原理图如右。原理如下:当C0时,上式近似为:即/C与高聚物溶液浓度C成直线关系。从直线截距可求数均相对分子质量,从斜率可求A2。实际测试过程:实际测试过程:人为配制若干为同浓度的高聚物溶液;分别测定各浓度下的渗透压值;计算相应的/C值;再将/C对应浓度C作图,绘制直线,并将直线外推至C0的截距处,求截距值,最后计算数均相对分子质量。溶

33、液溶剂本讲稿第三十八页,共四十四页第五章高聚物的结构第五章高聚物的结构第第22题题续解:(2)黏度法测定高聚物相对分子质量的原理与过程)黏度法测定高聚物相对分子质量的原理与过程原理:原理:在温度恒定下(0.02),所用仪器乌式奥式黏度计。式中A仪器常数(出厂标定值),t液体流经a、b两线间的时间。分别测定出溶液与溶剂的黏度,并将两者的密度看成近似相等,则相对黏度可以表示为:测定过程:测定过程:用黏度计分别测定溶剂和不同浓度的高聚物稀溶液的黏度;利用各黏度之间的关系计算出相对黏度、增比黏度、比浓黏度;将比浓黏度对浓度作本讲稿第三十九页,共四十四页第五章高聚物的结构第五章高聚物的结构第第22题题续

34、解:图,并外推至浓度为零时的截距值,可得特性黏度;再查出K与值,利用马克公式计算得黏均相对分子质量。对柔性链高分子良溶剂体系体系,可采用一点法计算特性黏度:C12lnr/C或SP/C本讲稿第四十页,共四十四页第五章高聚物的结构第五章高聚物的结构第第23题题解答:解答:证毕本讲稿第四十一页,共四十四页第五章高聚物的结构第五章高聚物的结构第第24题题解答:解答:(1)已知:W1100g M1100000;W21g M21000 求:Mn?;Mw?;HI?解:本讲稿第四十二页,共四十四页第五章高聚物的结构第五章高聚物的结构第第24题题续解:由相对分子质量分散系数定义可得:(2)已知:W1100g M1100000;W21g M21000000 求:Mn?;Mw?;HI?解:按(1)中的各计算公式可得:本讲稿第四十三页,共四十四页第五章高聚物的结构第五章高聚物的结构第第24题题续解:(3)计算结果分析由100g的相对分子质量100000的试样中加入1g相对分子质量1000的组分改为加入1g相对分子质量10000000组分的计算结果看:数均相对分子质量增加了99.8%;重均相对分子质量增加了100%;计算结果说明题中所列的意图。本讲稿第四十四页,共四十四页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com