海上现浇混凝土施工技术总结 1.31(21页).doc

上传人:1595****071 文档编号:37051027 上传时间:2022-08-29 格式:DOC 页数:21 大小:1.85MB
返回 下载 相关 举报
海上现浇混凝土施工技术总结 1.31(21页).doc_第1页
第1页 / 共21页
海上现浇混凝土施工技术总结 1.31(21页).doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《海上现浇混凝土施工技术总结 1.31(21页).doc》由会员分享,可在线阅读,更多相关《海上现浇混凝土施工技术总结 1.31(21页).doc(21页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、-海上现浇混凝土施工技术总结 1.31-第 21 页海上现浇承台施工技术总结赵晶伟 王烁(天津港航工程有限公司第三项目经理部)摘 要:本项工程的水上混凝土的浇筑工艺非常具有代表性,即展示了此类工程的施工工艺,又对一些常见的问题进行了解决,本工程于2015年8月12日完成全部施工任务,质量满足规范和设计要求。关键词:墩台 海上现浇 吊机组 搅拌船 1.工程概况在天津大神堂浅海活牡蛎礁独特生态系统保护与修复项目(核心区警示灯塔及监控系统)施工中,桩基上部墩台部分,作为海上大体积混凝土施工工艺,混凝土内外温度控制较难,容易造成开裂等质量问题。且劳动力需求量较大,涉及到专业较多,钢筋加工制作需在水上方

2、驳上完成,底模板安装和拆除难度大,整体质量控制难度较大。混凝土承台为钢筋混凝土结构,长10m,宽10m,厚度为1.5m,面积为100,混凝土浇筑方量为213。施工内容主要包括墩台模板底板的支立,钢筋的绑扎与安装,侧模的支立,混凝土浇筑。上部护轮坎结构也作为栏杆基础,25cm高,长35.3m,共包含2.4m混凝土。整个承台结构混凝土分两次进行浇筑,第一次浇筑50cm,第二次浇筑剩余1m承台、护轮坎及上部结构立柱。图1.1 工程位置平面图2. 自然条件工程位于渤海湾的西北侧,渤海的气象状况具有季节分明、变化显著的特征。本工程施工期间,主要受夏风及雨水影响(含热带风暴),台风(含热带风暴)出现频率较

3、小。本区历年平均风速。年平均降水413.3mm,年平均气温。根据观测资料本海域的潮汐属于不规则半日潮型,其(HO1+HK1)。本海域极端高水位5.88m,设计高水位4.30m,极端低水位-1.29m,设计低水位0.50m。本项目均以天津港理论最低潮面为基准面。天津港理论最低潮面与大沽零点及当地平均海平面的关系如下图: 当地平均海面 大沽零点 天津港理论最低潮面3、施工难度分析工程采用水上浇筑大体积混凝土施工,主要难度在于三点工艺施工过程。一是本工程承台施工底标高较高,墩台下方仅靠八根斜桩支撑,支立底模所用吊梁工艺设计较为复杂,即需要使铺底结构满足承载力要求,又不能影响钢柱上部结构的绑扎。我部采

4、用夹桩铺底结构,使用吊杆吊起主、次梁,托起浇筑所需全部模板,实现了结构的模板支立工艺。图3.1模板工艺示意图二是本工程混凝土浇筑需要在海上进行,且墩台结构体积较大,海上浇筑存在一定难度,首先是浇筑方式,既采用何种方式进行混凝土的材料运输及浇筑,还必须需要考虑较大体积混凝土内部散热问题,避免混凝土开裂。为解决此点,我部多次讨论后决定,浇筑方式采用海上拌合船现场拌合,砂石等材料由拌合船所配方驳运输至施工现场,混凝土采取两次浇筑的方式,一是为上文“吊底”结构减轻压力,二是解决了混凝土浇筑厚度太大不利于散热的问题。图3.2搅拌船实物图4、设备选择方驳吊机组本工程承台结构考虑使用方驳吊机组进行施工,另承

5、台结构所用钢筋及材料均采用此方驳吊机组进行运输。由于承台施工主要起吊零星材料,故选择吊机主要考虑承台施工所需吊高及长度,经多方选择,选用中联QUY80t履带吊机,与1500t方驳“冀盈海 087”后组装成方驳吊机组。履带吊臂长46m。在方驳前部中间部位,按照履带吊履带位置,在甲板上焊接20mm厚钢板(长9m、宽2.84m),履带吊爬作为斜支撑加到钢板上后进行加固,履带底部满铺3cm厚木板用于防滑。在履带前后立焊25#槽钢,并焊接20#槽钢以固定;两条履带两侧分别立焊25#槽钢各4根(高度以不影响吊机旋转作业为准),并以14#槽钢进行连接压焊在吊机履带下,立焊槽钢两侧焊20#槽钢作为斜支撑。图4

6、.1 履带吊吊重曲线 图4.2 方驳吊机组实物图拌合船墩台部分混凝土浇筑共约213m,其中包括桩芯浇筑约50m,墩台主体部分混凝土150m,护轮坎约3m。现浇墩台厚度为1.5m,由于混凝土体积较大,且按照设计中基桩深入墩台中10cm,所以墩台混凝土必须在海上进行浇筑,为保证浇筑效果,计划采用分步浇注工艺,浇注砼考虑采用水上拌合船现场拌合并泵送砼。水上浇筑混凝土与陆地浇筑混凝土相比,主要有以下几点差异产生的问题。首先是材料的大规模运输,与陆上搅拌站砂石等材料可以囤积准备相比,海上搅拌混凝土必须保证混凝土材料的供应充足。本工程根据混凝土配合比计算出所用砂、石、水泥等用量,采用搅拌船配套方驳将混凝土

7、材料准备充足并用于运输、存料所用,满足了混凝土搅拌材料的供应,但增加了一定的施工成本。第二是与陆上混凝土浇筑相比,水上混凝土的浇筑效率较低,在温度较高的施工环境下,很容易影响浇筑质量,所以对搅拌船的性能有一定的要求限制。本工程拌合船选用了仓容为350m,浇筑效率为50m/h的拌合船,基本满足了施工所需。图4.3 搅拌船实物图5、工艺选择及计算工艺选择工程基础采用钢桩结构,墩台混凝土悬挑在钢桩结构上,且混凝土重量较重,底模支设时存在一定难度,夹桩铺底工艺主要是为了满足钢桩上墩台结构的大体积混凝土支设底模的要求。本工程混凝土承台为钢筋混凝土结构,承台上部混凝土总重量约为420t。吊梁铺底结构计算主

8、要考虑两部分,第一部分为上部混凝土结构重量传递至吊底结构后,主次梁接触部位所产生的集中荷载;第二部分上部重量传递至吊底结构,桩顶吊底结构所受的重力是否满足钢材许用应力要求。第一部分计算,由于主次梁接接触点较多,弯矩及钢材变形情况较为复杂,可以使用清华大学制作的“结构力学求解器”进行计算;第二部分受力较为简单,只需要计算八根钢柱吊杆是否能满足吊起一步混凝土重量即可。第二部分受力计算理论,利用起重原理,将钢柱上八个部分受力简化为“八点起吊上部混凝土重量”,起重原理考虑起重安全,假设六点受力,即六个点承受第一步混凝土重量,第一步混凝土重约140t,即每个点最大受力情况为140/6=23.3t。由此可

9、以计算选用吊杆钢材型号是否满足工程所需。传统的吊底方案主要有采用钢桩上安置“板凳”(工字钢),吊起下部钢梁结构,支撑混凝土底模,实现浇筑结构。此种结构的优点为安装较为简单,对材料二次加工的要求不高,受力计算较为容易。缺点是此种结构“板凳”位置对桩顶钢筋的绑扎及安装影响较大,相同位置上的钢筋位置必须处理,或钻孔穿过“板凳”或绕过“板凳”,且需要重新联系设计单位进行图纸的变更。第二种吊底方案主要采用在钢柱上直接吊挂且焊接固定加工好的吊杆,使吊杆作为吊起整个钢梁的主要受力形式。此方案优点在于吊杆结构较细,且紧贴在钢桩顶面,使承台钢筋绑扎及安装不受影响,且拆除吊底结构时比较方便。缺点是吊杆结构需要提前

10、对材料进行较为精细的加工,且现阶段桩基打设工艺达不到较高的精确度,打设后需要根据桩基的实际位置,需再次对吊杆结构进行加工。本工程承台结构较大,受成品钢筋最大长度制约,由于钢筋绑扎路线穿插较多,为了更加顺利的完成工艺要求,最终采用第二种吊底方案进行施工。工艺验算在吊梁构件采购前,应严格计算所选构件是否符合力学要求,本工程吊底关键过程在于主梁、次梁及螺丝杆的选型,及混凝土分层厚度的选择。1、 混凝土厚度选择计算: 承台长宽为1010m,厚度为1.5m,共150m3。混凝土重量为1502.6=390t。混凝土强度为40Mpa,截面积为100m2,40100=4000KN,即上部压力需小于4000KN

11、。重力加速度去10m/s2,既1KN=0.1t。即上部压力小于400t即可。故从抗压强度角度计算,下部混凝土可以承受上部压力。分层厚度主要考虑减轻下部吊底结构压力,分层下部应尽量减轻重量。当下部分层浇筑厚度为50cm时,下部混凝土重量为130t,钢材验算过程如下。2、主梁槽钢选用验算:本工程所选槽钢型号为40a型槽钢。=M/W,M为最大弯矩,W为截面系数(查所用槽钢材料表为879,如表1.1),为钢材的许用应力(查表为170MPa)。其中M=ql2/8,q为均布荷载。式中q=F/L。F为上部受力,L为受力长度。表截面特性参数表中部验算:砼重量:100.5=80t次梁重量:槽钢选用28a型,理论

12、重量为kg/m,槽钢长度为4.1m,取数量20根,总长度为240m,总重量为,240=11493振捣重量:面积系数=10(1.6+1.9)2= 70KN=7t施工重量:面积系数=10(1.6+1.9)1= 模板重量:面积系数=10(1.6+1.9)2=70KN=7t,102即总重量为80+7+3.5+7+3.2= t许用应力计算:q=F/L=1122/10=KN/mM=ql2/8=2/8= 574.5KNm= M/W=574.5*103/(8794)=Mpa170Mpa,符合要求,且相差不大,考虑选用40型槽钢进行施工。承台两侧验算:砼重量:混凝土体积系数=(1.6+1.8)2)0.5=t次梁

13、重量:槽钢选用28a型,理论重量为kg/m,槽钢长度为4.1m,数量30根,总长度为360m,总重量为,360=振捣重量:面积系数=10(1.6+1.8)施工重量:面积系数=10(1.6+1.8)模板重量:面积系数=10(1.6+1.8)2=68KN=6.8t,10即总重量为+17.24+6.8+3.4+6.8+1.6=t悬挑位置为最大弯矩出出,故许用应力计算:q=F/L,L取10m,F=885.4KN,q=KN/mM=ql2/2=22/2= KNm=M/W=*103/(8794)= Nmm170Mpa,符合要求。3、次梁工字钢选用验算:本工程所选槽钢型号为28a型工字钢。=M/W,M为最大弯

14、矩,W为截面系数(查所用工字钢材料表为508,如表1.2),为钢材的许用应力(查表为170Mpa)。其中M=ql2/8,q为均布荷载。式中q=F/L。F为上部受力,L为受力长度。表1.2工字钢截面特性参数表最长跨度次梁,砼重量计算:砼重量:100.5=80t振捣重量:面积系数=10(1.6+1.9)2/2= 施工重量:面积系数=10(1.6+1.9)1/2= 17.5KN=1.75t模板重量:面积系数=10(1.6+1.9)2/2=35KN=3.5t,102总重量为80+3.5+1.75+3.5+1.6=tq=F/L= 903.5/3.2=KN/mM=ql2/8=2/8=2KNm= M/W=2

15、*103170Mpa,符合要求。4、吊杆选用,可按下式验算:=N/S2,N为所受拉力,d为圆钢截面积,为钢材的强度设计值(查所用钢材材料表为200205,如表1.3)表1.3钢材强度参数表螺杆受力验算:砼重量计算:375t 125t次梁重量t总重为125+17.24+8.4=单根受力考虑 t/10= 即N=15.1,考虑使用Q235型直径为40mm圆钢,Q235许用应力为170 N/mm2。=N/S2103103= 130N/mm2170 N/mm2,符合要求。5、侧模验算:基本参数次楞(内龙骨)间距(mm):600;穿墙螺栓水平间距(mm):600;主楞(外龙骨)间距(mm):350;穿墙螺

16、栓竖向间距(mm):350;对拉螺栓直径(mm):M16;外墙螺栓加止水环。主楞信息龙骨材料:钢楞;截面类型:圆钢管481.5;钢楞截面惯性矩I(cm4):10.78;钢楞截面抵抗矩;主楞肢数:2;次楞信息龙骨材料:木楞;宽度(mm):10;高度(mm):1;面板参数面板类型:胶合面板;面板厚度;面板弹性模量;面板抗弯强度设计值;面板抗剪强度设计值;木方和钢楞方木抗弯强度设计值;方木弹性模量;方木抗剪强度设计值;钢楞弹性模量;6、侧模板荷载标准值计算按建筑施工模板安全技术规范建筑施工计算手册,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的其中 C- 混凝土的重力密度,取;t -

17、新浇混凝土的初凝时间,取2.5h;T - 混凝土的入模温度,取25.000;V - 混凝土的浇筑速度,取.000m/h;H - 00m;1- 外加剂影响修正系数,取;2- 混凝土坍落度影响修正系数,取。根据以上两个公式计算的新浇筑混凝土对模板的最大侧压力F;分别计算得 N/m2、36.0 kN/m2kN/m2作为本工程计算荷载。故,计算中采用新浇混凝土侧压力标准值 F1=N/m2;倾倒混凝土时产生的荷载标准值 F2= 2 kN/m2。7、侧模板面板的计算面板为受弯结构,需要验算其抗弯强度和刚度。按规范规定,强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载;挠度验算只考虑新浇混凝土侧压力。

18、计算的原则是按照龙骨的间距和模板面的大小,按支撑在内楞上的三跨连续梁计算。面板计算简图抗弯强度验算跨中弯矩计算公式如下:其中, M-面板计算最大弯距(N.mm); l-计算跨度(内楞间距): l =350mm; b:面板宽度取1500,h:面板截面厚度18 q-作用在模板上的侧压力线荷载,它包括:新浇混凝土侧压力设计值1;其中为按施工手册取的临时结构折减系数。倾倒混凝土侧压力设计值10.90=kN/m; q = q1 + q2 =+=kN/m;面板的最大弯距:350350= 5;按以下公式进行面板抗弯强度验算:其中, -面板承受的应力(N/mm2); M -面板计算最大弯距(N.mm); W

19、-面板的截面抵抗矩: b:面板宽度,h:面板截面厚度; W= 1000104 mm3; f -面板截面的抗弯强度设计值(N/mm2);面板截面的最大应力计算值: = M/ W = 5105 / 104 = N/mm2;面板截面的最大应力计算值 =N/mm2 小于 面板截面的抗弯强度设计值 f=13N/mm2,满足要求!挠度验算根据建筑施工模板安全技术规范建筑施工计算手册,刚度验算采用标准荷载,同时不考虑振动荷载作用。挠度计算公式如下:其中,q-作用在模板上的侧压力线荷载: q = 1 = N/mm; l-计算跨度(内楞间距): l = 350mm; E-面板的弹性模量: E = 9500N/m

20、m2; I-面板的截面惯性矩: I = 100cm4;面板的最大挠度计算值: = 0.6773504/(1009500105) = mm;面板的最大挠度计算值: =mm 小于面板的最大允许挠度值 =mm,满足要求!8、侧模板内外楞的计算内楞(木或钢)直接承受模板传递的荷载,按照均布荷载作用下的三跨连续梁计算。本工程中,内龙骨采用木楞,宽度50mm,高度100mm,截面惯性矩I和截面抵抗矩W分别为:W = 50100100/6 = 3;I = 50100100100/12 = 4;内楞的抗弯强度验算内楞跨中最大弯矩按下式计算:其中, M-内楞跨中计算最大弯距(N.mm); l-计算跨度(外楞间距

21、): l =600mm; q-作用在内楞上的线荷载,它包括: 新浇混凝土侧压力设计值; 倾倒混凝土侧压力设计值0.90=kN/m,其 中,为折减系数。 q =(1+)=1kN/m;内楞的最大弯距:1600600= ;内楞的抗弯强度应满足下式:其中, -内楞承受的应力(N/mm2); M -内楞计算最大弯距(N.mm); W -内楞的截面抵抗矩(mm3),104; f -内楞的抗弯强度设计值(N/mm2);内楞的最大应力计算值: =105/8.33104 = 7.07 N/mm2;内楞的抗弯强度设计值: f = 13N/mm2;内楞的最大应力计算值 = N/mm2 小于 内楞的抗弯强度设计值 f

22、=13N/mm2,满足要求!内楞的挠度验算根据建筑施工模板安全技术规范建筑施工计算手册,刚度验算采用荷载标准值,同时不考虑振动荷载作用。 挠度验算公式如下:其中, -内楞的最大挠度(mm); q-作用在内楞上的线荷载(kN/m): q = 0.4/1=kN/m; l-计算跨度(外楞间距): l =600mm ; E-内楞弹性模量(N/mm2):E = 9500.00 N/mm2 ; I-内楞截面惯性矩(mm4),106;内楞的最大挠度计算值: = 0.67716004/(10095004.17106) = 0.21 mm;内楞的最大容许挠度值: = mm;内楞的最大挠度计算值 =0.21mm

23、小于 内楞的最大容许挠度值 =mm,满足要求!外楞承受内楞传递的荷载,按照集中荷载作用下的三跨连续梁计算。本工程中,外龙骨采用钢楞,截面惯性矩I和截面抵抗矩W分别为:截面类型为圆钢管481.5(双钢管);外钢楞截面抵抗矩;外钢楞截面惯性矩; 外楞计算简图外楞抗弯强度验算外楞跨中弯矩计算公式:M其中,作用在外楞的荷载2)0.40.2=kN; 外楞计算跨度(对拉螺栓水平间距): l = 600mm;外楞最大弯矩:M = 0.2673630600105 N/mm;强度验算公式:其中, - 外楞的最大应力计算值(N/mm2) M - 外楞的最大弯距(N.mm);105 N/mm W - 外楞的净截面抵

24、抗矩;103 mm3; f -外楞的强度设计值(N/mm2),;外楞的最大应力计算值: = 5.82105/4.49103/2 = N/mm2;(双钢管所以作用力要除以2)外楞的抗弯强度设计值: f = 205N/mm2;外楞的最大应力计算值 =N/mm2 小于外楞的抗弯强度设计值 f=205N/mm2,满足要求!外楞的挠度验算根据建筑施工模板安全技术规范、建筑施工计算手册,刚度验算采用荷载标准值,同时不考虑振动荷载作用。挠度验算公式如下: /100EI 其中,P-内楞作用在支座上的荷载(kN/m):P = 0.40.kN; -外楞最大挠度(mm); l-计算跨度(水平螺栓间距): l =60

25、0.0mm ; E-外楞弹性模量(N/mm2):E = 206000.00 N/mm2 ; I-外楞截面惯性矩(mm4),105;外楞的最大挠度计算值: = 1036003/(1002060001.08105) = 0.26mm;(双钢管所以作用力要除以2)外楞的最大容许挠度值: = 1.0mm;外楞的最大挠度计算值 =0.26mm 小于 外楞的最大容许挠度值 =1.0mm,满足要求!6、施工方法6.1夹桩铺底结构工艺吊安钢梁主要采用方驳吊机组水上吊装,从桩顶焊接一组螺丝吊杆,吊双拼槽钢为主梁,主梁安放完成后,在主梁上铺设工字钢作为次梁,然后在次梁上码放木方,钉厚竹胶板,完成铺底施工,如下图所

26、示:图6.1 铺地细部图主、次梁的选用主要考虑第一步浇筑50cm混凝土时,整个吊梁铺底结构的受力情况,采用40mm直径螺栓作为吊杆结构,40a型槽钢作为主梁,28a型工字钢作为次梁,使用10*10cm方木作为模板下铺底找平结构。剩余1m厚混凝土及杯口重量由下部已经达到标号混凝土承担全部重量,吊底结构布置方式如下图所示:图6.2 吊梁结构布置图整个结构依靠直径为40mm、长度为3m钢吊杆穿过双拼方木吊起,螺栓下方设置12cm长丝扣,利用2cm厚双螺母及2cm厚25cm25cm垫片拧紧固定。另使用16mm直径螺杆,配合配套螺母及1cm垫片,穿孔拉紧钢桩两侧槽钢,钢桩两侧共设置两道。图6.3 钢梁布

27、设立面图图6.4 剖面细部图1图6.5 剖面细部图2图6.6 夹桩铺底工艺实际施工效果图经施工实践,此工艺在本工程应用中取得了成功,墩台混凝土于7月13日顺利浇筑完毕,模板及钢梁结构均无变形及漏浆等情况发生。经过细致的记录、总结全部施工情况,发现问题如下,一是由于桩基打设工艺达不到较高的精确度,打设后需要根据桩基的实际位置,再次对吊杆结构进行了加工调整,对二次加工的要求较高,在以后的施工中,仍需根据实际情况综合考虑“板凳”吊底工艺及吊杆吊底工艺的取舍。二是施工中必须随时关注每层铺底结构的标高变化及找平情况,否则当底板铺设完成后,标高的偏差将很难调整。6.2侧模工艺在底模铺设完毕、钢筋绑扎完成后

28、,由测量人员在底板上测设墩台侧模边线,然后进行侧模的支立,侧模支立采用方驳吊机组水上吊运模板,按照边线人工拼装。本工程墩台侧模均采用木模板,高度为180cm,包括墩台部分、护轮坎部分,杯口部分,待第一部混凝土浇筑完成后进行杯口模板支立。长度拼接使用,均为10m。横围囹为木质,采用69cm方木,竖围囹为直径48钢管,对穿螺丝采用16mm通长布置。具体布置形式如立面图所示。整个侧模主要是架设在底模板上,利用圆台螺母后丝拉紧模板,完成支模过程。图6.7 侧模立面图 侧模支立工艺实际施工效果图在施工过程中,此工艺施工十分易于安装,在吊机的配合下,施工速度较快,模板连接处接插较严,拆模后混凝土外观质量良

29、好。6.3加设钢筋网为保证第一层混凝土受力结构稳定,在第一层砼浇筑完毕后,要绑扎一层负弯矩钢筋,钢筋采用20 HRB400型钢筋,钢筋网垂直方向均为每隔30cm布设一道,共布设70道。图6.9 负弯矩钢筋平面布置图 6.4水上混凝土浇筑方式墩台部分混凝土浇筑共约213m,其中包括桩芯浇筑约50m,墩台主体部分混凝土150m,护轮坎约3m。现浇墩台厚度为1.5m,由于混凝土体积较大,且按照设计中基桩深入墩台中10cm,所以墩台混凝土必须在海上进行浇筑,为保证浇筑效果,计划采用分步浇注工艺,浇注砼考虑采用水上拌合船现场拌合并泵送砼。水上浇筑混凝土与陆地浇筑混凝土相比,主要有以下几点差异产生的问题。

30、首先是材料的大规模运输,与陆上搅拌站砂石等材料可以囤积准备相比,海上搅拌混凝土必须保证混凝土材料的供应充足。本工程根据混凝土配合比计算出所用砂、石、水泥等用量,采用搅拌船配套方驳将混凝土材料准备充足并用于运输、存料所用,满足了混凝土搅拌材料的供应,但增加了一定的施工成本。第二是与陆上混凝土浇筑相比,水上混凝土的浇筑效率较低,在温度较高的施工环境下,很容易影响浇筑质量,所以对搅拌船的性能有一定的要求限制。本工程拌合船选用了仓容为350m,浇筑效率为50m/h的拌合船,基本满足了施工所需。图6.10 拌合船形式实际效果图第三是考虑到墩台混凝土较厚,浇筑厚度达到了1.5m后,若一次浇筑,会使得一瞬间

31、内混凝土内外温差过大,使得混凝土产生开裂。为保证施工质量,且综合考虑海上拌合船的施工性能,墩台混凝土浇筑计划分为两次完成。图6.11 浇筑示意图本工程第一步浇筑50cm混凝土(见工艺验算内容)。第一步浇筑后,待强度达到要求,进行凿毛处理后,进行冲水清理,碎渣从利用人工扫成一堆后,利用钢筋笼空隙吊出,再进行二步混凝土浇筑施工,直接施工至护轮坎顶部。图6.12 拌合船实际浇筑效果图此项工艺施工顺利完成后,经自验收,混凝土表面无裂纹,侧面无明显冷缝,质量满足了设计及规范要求。其中也暴露出了一些问题,一是拌合船浇筑高度受到了长落潮的一些制约,经过加设胶皮管及“灰斗”配合下得到了解决,以后需提前准备、考

32、虑这些施工器具。二是第一步混凝土凿毛处理后,产生的灰渣清理困难,由于上方存在承台上层钢筋网,灰渣难以取出。未解决此问题,现场专门制作了几个简易的吊篮,将灰渣从缝隙中一点点拎出,此方法耗费人工较多。6.5模板拆除的方式本工程混凝土浇筑完成后,由于承台标高较高,模板拆除存在一定的难度,为配合吊机进行模板拆除,首先必须有可站人的工作面。浇筑及钢筋绑扎所用工作面为吊梁结构上部底模,拆除底模时需要重新创造工作面,但外海施工无法创造稳定的工作面,若在海中使用小型船只施工,会造成两个制约,一是受天气因素影响极大,必须选择风平浪静的天气,若稍有风力,无法稳定进行施工,还容易使船只磕碰钢桩,对钢桩造成二次破坏。

33、二是承台底标高较高,受潮水涨落影响较大,需在高潮水面才能进行拆底施工。为解决此问题,我部决定仍采用钢梁结构作为工作面,利用墩台吊底所用钢梁,在墩台拆底过程中,使用6个导链分别固定六组钢梁,同时操作六组导链,使六组钢梁同时下降,完成了底模拆除施工。如下图所示:图6.13 拆底工艺效果图上面两张照片为实际施工中底模板拆除,我部按照原定计划固定6组导链,为保证钢梁下降,每组导链由一名工人负责,统一指挥,保证钢梁能同步下降,成功完成了拆底施工。7、施工中存在问题的整理 吊杆的二次加工存在问题:桩基沉桩完成后,预加工好的吊杆无法使用。原因分析:现阶段,桩基打设工艺达不到较高的精确度,打设后的钢桩的实际位

34、置与图纸中设计位置存在一定的偏差,而吊杆则严格按照图纸中桩基位置设计,精确度达到毫米级。所以钢桩沉击精度达不到吊杆精确度要求。解决方案:打设后需要根据桩基的实际位置,再次对吊杆结构进行了加工调整,对二次加工的要求较高,在以后的施工中,仍需根据实际情况综合考虑“板凳”吊底工艺及吊杆吊底工艺的取舍。 模板顶标高的控制存在问题:模板顶标高难以控制。原因分析:加桩铺底施工过程中,由于铺底结构层数较多,且使用的材料较为粗犷,不易控制顶标高位置。当底板铺设完成后,标高的偏差将很难调整。解决方案:协同项目部测量人员,随时关注每层铺底结构的标高变化及找平情况,在每层结构随时进行调整,保证底板最终标高的准确。

35、墩台拆底存在问题:由于承台标高较高,模板拆除存在一定的难度,为配合吊机进行模板拆除,首先必须有可站人的工作面。原因分析:浇筑及钢筋绑扎所用工作面为吊梁结构上部底模,拆除底模时需要重新创造工作面,但外海施工无法创造稳定的工作面,若在海中使用小型船只施工,会造成两个制约,一是受天气因素影响极大,必须选择风平浪静的天气,若稍有风力,无法稳定进行施工,还容易使船只磕碰钢桩,对钢桩造成二次破坏。二是承台底标高较高,受潮水涨落影响较大,需在高潮水面才能进行拆底施工。解决方案:采用钢梁结构作为工作面,利用墩台吊底所用钢梁,在墩台拆底过程中,使用6个导链分别固定六组钢梁,同时操作六组导链,使六组钢梁同时下降,下降至满足钢柱修补施工的工作面后,开始进行钢柱修补,钢柱修补高度随着钢梁高度的下降调节,保证在每一个高度上都能创造稳定的工作面,还能为每一层结构拆卸提供充足的空间。7、结束语本项工程的水上混凝土的浇筑工艺非常具有代表性,即展示了此类工程的施工工艺,又对一些常见的问题进行了解决,本工程于2015年8月12日完成全部施工任务,质量满足规范和设计要求,实现了工程前期计划对工程难点的突破。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com