了解汽车的“心脏”—发动机基本构造详解(48页).doc

上传人:1595****071 文档编号:35588768 上传时间:2022-08-22 格式:DOC 页数:47 大小:433.50KB
返回 下载 相关 举报
了解汽车的“心脏”—发动机基本构造详解(48页).doc_第1页
第1页 / 共47页
了解汽车的“心脏”—发动机基本构造详解(48页).doc_第2页
第2页 / 共47页
点击查看更多>>
资源描述

《了解汽车的“心脏”—发动机基本构造详解(48页).doc》由会员分享,可在线阅读,更多相关《了解汽车的“心脏”—发动机基本构造详解(48页).doc(47页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、-了解汽车的“心脏”发动机基本构造详解-第 47 页汽车要在道路上行驶必须先有动力,而动力的来源就是发动机。发动机性能的好坏是决定汽车行驶性能的最大因素。目前汽车使用的发动机均属于内燃机,发动机的功能就是将燃料的化学能转成热能再转成机械能,而机械能也就是一般所谓的动力。发动机在将燃料转成动力的过程中会经过一定的工作程序,而且此程序是周而复始连续不断的循环。常见的车用发动机依种类、大小及用途等等的不同而有许多的分类方式。一、依工作循环方式:1、奥图循环(Ottocycle):使用在汽油发动机。2、狄塞尔循环(Dieselcycle):使用在柴油发动机。二、依使用燃料的种类:1、汽油发动机:主要使

2、用在汽车、航空器。2、柴油发动机:主要使用在汽车、船、发电机。3、重油发动机:主要使用在船、发电机。4、燃气发动机:主要使用在汽车。三、依冷却方式分:1、气冷式发动机2、水冷式发动机四、依工作循环冲程分:1、二冲程发动机:二个冲程完成一个工作循环。2、四冲程发动机:四个冲程完成一个工作循环。五、依活塞运动的不同分:1、往复式活塞发动机(reciprocatingengine)2、回转式活塞发动机(rotaryengine)六、依点火方式分:1、压缩点火式发动机2、火花塞点火式发动机七、依气缸数量分:1、单气缸发动机2、多气缸发动机八、依气缸排列方式分:1、直列式发动机2、V型发动机3、W型发动

3、机4、水平对置发动机现行汽车产品上所使用的发动机,主要为采用奥图循环、以汽油为燃料的往复式活塞四冲程多气缸自然进气发动机,依不同的排气量与工程需求,有直列四缸、V型六气缸等形式。各种型式的发动机所采用的零件,以及在发动机外部的次系统零组件,都非常的相似。接下来我们将为大家一一的介绍发动机的各项零件和次系统的原理及功能。(一)发动机的基本构造缸径、冲程、排气量与压缩比发动机是由凸轮轴、气门、气缸盖、气缸体、活塞、活塞连杆、曲轴、飞轮、油底壳等主要组件,以及进气、排气、点火、润滑、冷却等系统所组合而成。以下将分别介绍在汽车型录的发动机规格表中常见的缸径、冲程、排气量、压缩比、SOHC、DOHC等名

4、词。缸径:气缸体上用来让活塞做运动的圆筒空间的直径。冲程:活塞在气缸体内运动时的起点与终点的距离。一般将活塞在最靠近气门时的位置定为起点,此点称为上止点;而将远离气门时的位置称为下止点。排气量:将气缸的面积乘以冲程,即可得到气缸排气量。将气缸排气量乘以气缸数量,即可得到发动机排气量。以丰田花冠1.8L车型的直列4气缸发动机为例:缸径:79.0mm,冲程:91.5mm,气缸排气量:448.5cc;发动机排气量气缸排气量41794cc。压缩比:最大气缸容积与最小气缸容积的比率。最小气缸容积即活塞在上止点位置时的气缸容积,也称为燃烧室容积。最大气缸容积即燃烧室容积加上气缸排气量,也就是活塞位于下止点

5、位置时的气缸容积。丰田花冠1.8L发动机的压缩比为10:1,其计算方式如下:气缸排气量:448.5cc,燃烧室容积:49.83cc;压缩比(49.84448.5):49.849.998:110:1。(二)发动机的基本构造凸轮轴与气门凸轮轴:在一支轴上有许多宛如蛋形凸轮,其被安装在气缸盖的顶部,用来驱动进气气门和排气气门做开启与关闭的动作。在凸轮轴的一端会安装一个传动轮,以链条或皮带与位于曲轴上的传动轮连接。在以链条传动的系统中此传动轮为一齿轮;在以皮带传动的系统中此传动轮为一具齿槽的皮带轮。一般双顶置凸轮轴(DOHC)设计的发动机,其进气和排气的凸轮轴均挂上一个传动轮,由链条或皮带直接带动凸轮

6、轴转动。有些发动机为了减少气门夹角,而将凸轮轴的传动方式改变成以链条传动方式带动进气或排气的凸轮轴,再藉由安装在进气和排气的凸轮轴上的齿轮以链条带动另外一支凸轮轴。丰田独特的TWINCAM设计方式,则是以链条或皮带去带动位于进气或排气的凸轮轴上的传动轮,之后再以安装在进气和排气的凸轮轴上的无间隙齿轮机构带动另外一支凸轮轴。气门:控制空气进出气缸的阀门。让空气或混合气进入的称为进气气门。让燃烧后的废气排出的称为排气气门。(三)发动机基本构造SOHC单凸轮轴发动机发动机的凸轮轴装置在气缸盖顶部,而且只有一支凸轮轴,一般简称为OHC(顶置凸轮轴,OverHeadCamShaft)。凸轮轴透过摇臂驱动

7、气门做开启和关闭的动作。在每气缸二气门的发动机上还有一种无摇臂的设计方式,此方式是将进气门和排气门排在一直在线,让凸轮轴直接驱动气门做开闭的动作。有VVL装置的发动机则会透过一组摇臂机构去驱动气门做开闭的动作。(四)发动机基本构造DOHC双凸轮轴发动机此种发动机在气缸盖顶部装置二支凸轮轴,由凸轮轴直接驱动气门做开启和关闭的动作。仅有少数发动机是设计成透过摇臂去驱动气门做开闭的动作。有VVL装置的发动机则会透过一组摇臂机构去驱动气门做开闭的动作。DOHC较SOHC的设计来得优秀的主要原因有二:一是凸轮轴驱动气门的直接性,使气门有较佳的开闭过程,而提升气缸在进气和排气时的效率;另一则是火花塞可以装

8、置在气缸盖中间的区域,使混合气在气缸内部可以获得更好、更平均的燃烧。直列发动机VSV型发动机直列发动机一如其名,直列发动机气缸排列成一条直线。发动机的所有气缸均排列在同一平面上,形成一直列的情形,称为直列发动机。以直列四气缸发动机为例,常见的标示方式有二种,一是取与排列外型相似的I做标示,就标示为I4。另外一种则是以英文Line做开头,而标示为Line4或L6以代表直列4气缸或是直列6气缸发动机之意。V型发动机气缸数增加,采用V型排列的发动机可以有效减少发动机提及,增加车内空间。发动机的气缸分别排列在二个平面上,此二个平面相互产生一个夹角。气缸呈V型排列的发动机会因气缸数量的不同,而有60、9

9、0、120度三种常见的角度。发动机气缸排列在两个相交的V型平面上,则称为W型发动机,而夹角为180度的发动机则另外称为水平对置式发动机。可变气门正时&可变长度进气岐管可变气门正时:曲轴经由齿状的传动装置带动凸轮轴转动,使气门在做开启与关闭的动作时会与曲轴的转动角度成一定的对应关系。由于气体流动的性质会随着发动机运转速度的快慢而改变,如何使气缸在不同的转速下都能够获得良好的进气效率?为此必须改变气门在开启与关闭时间。经由安装在凸轮轴前端的油压装置使凸轮轴可以另外做一小角度转动,以使进气门在转速升高时得以提早开启。可变长度进气岐管:为了使发动机在高、低转速时能够维持平稳的进气效率,如何制造出长度适

10、合的进气管路就成了一件重要的课题。藉由在进气管路中设置阀门来使进气管路改变成长、短二种路径。以满足发动机在高转速运转时需要流速快、动能大的气流;并且在低转速时供给发动机适当流量的空气。这样就能够使发动机在高转速时获得较大的马力,而在较低转速时有较佳的油耗表现。详细图解 汽车发动机机体组全面介绍机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。一. 气缸体(图2-1)水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体曲轴箱,也可称为气缸体。气缸

11、体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常把气缸体分为以下三种形式。(图2-2)(1) 一般式气缸体 其特点是油底壳安装平面和曲轴旋转中心在同一高度。这种气缸体的优点是机体高度小,重量轻,结构紧凑,便于加工,曲轴拆装方便;但其缺点是刚度和强度较差 (2) 龙门式气缸体 其特点是油底壳安装平面低于曲轴的旋转中心。它的优点是强度和刚度都好,能承受较大的机械负荷;但其缺点是工艺性较差,结构笨重,加工较困难。 (3) 隧

12、道式气缸体 这种形式的气缸体曲轴的主轴承孔为整体式,采用滚动轴承,主轴承孔较大,曲轴从气缸体后部装入。其优点是结构紧凑、刚度和强度好,但其缺点是加工精度要求高,工艺性较差,曲轴拆装不方便。 为了能够使气缸内表面在高温下正常工作,必须对气缸和气缸盖进行适当地冷却。冷却方法有两种,一种是水冷,另一种是风冷(图2-3)。水冷发动机的气缸周围和气缸盖中都加工有冷却水套,并且气缸体和气缸盖冷却水套相通,冷却水在水套内不断循环,带走部分热量,对气缸和气缸盖起冷却作用。现代汽车上基本都采用水冷多缸发动机,对于多缸发动机,气缸的排列形式决定了发动机外型尺寸和结构特点,对发动机机体的刚度和强度也有影响,并关系到

13、汽车的总体布置。按照气缸的排列方式不同,气缸体还可以分成单列式,V型和对置式三种(图2-4)。 (1) 直列式发动机的各个气缸排成一列,一般是垂直布置的。单列式气缸体结构简单,加工容易,但发动机长度和高度较大。一般六缸以下发动机多采用单列式。例如捷达轿车、富康轿车、红旗轿车所使用的发动机均采用这种直列式气缸体。有的汽车为了降低发动机的高度,把发动机倾斜一个角度。 (2) V型 气缸排成两列,左右两列气缸中心线的夹角180,称为V型发动机,V型发动机与直列发动机相比,缩短了机体长度和高度,增加了气缸体的刚度,减轻了发动机的重量,但加大了发动机的宽度,且形状较复杂,加工困难,一般用于8缸以上的发动

14、机,6缸发动机也有采用这种形式的气缸体。 (3) 对置式 气缸排成两列,左右两列气缸在同一水平面上,即左右两列气缸中心线的夹角 180,称为对置式。它的特点是高度小,总体布置方便,有利于风冷。这种气缸应用较少。气缸直接镗在气缸体上叫做整体式气缸,整体式气缸强度和刚度都好,能承受较大的载荷,这种气缸对材料要求高,成本高。如果将气缸制造成单独的圆筒形零件(即气缸套),然后再装到气缸体内。这样,气缸套采用耐磨的优质材料制成,气缸体可用价格较低的一般材料制造,从而降低了制造成本。同时,气缸套可以从气缸体中取出,因而便于修理和更换,并可大大延长气缸体的使用寿命。气缸套有干式气缸套和湿式气缸套两种(图2-

15、5)。 干式气缸套的特点是气缸套装入气缸体后,其外壁不直接与冷却水接触,而和气缸体的壁面直接接触,壁厚较薄,一般为13mm。它具有整体式气缸体的优点,强度和刚度都较好,但加工比较复杂,内、外表面都需要进行精加工,拆装不方便,散热不良。 湿式气缸套的特点是气缸套装入气缸体后,其外壁直接与冷却水接触,气缸套仅在上、下各有一圆环地带和气缸体接触,壁厚一般为59mm。它散热良好,冷却均匀,加工容易,通常只需要精加工内表面,而与水接触的外表面不需要加工,拆装方便,但缺点是强度、刚度都不如干式气缸套好,而且容易产生漏水现象。应该采取一些防漏措施。二. 曲轴箱 气缸体下部用来安装曲轴的部位称为曲轴箱,曲轴箱

16、分上曲轴箱和下曲轴箱。上曲轴箱与气缸体铸成一体,下曲轴箱用来贮存润滑油,并封闭上曲轴箱,故又称为油底壳图(图2-6)。油底壳受力很小,一般采用薄钢板冲压而成,其形状取决于发动机的总体布置和机油的容量。油底壳内装有稳油挡板,以防止汽车颠动时油面波动过大。油底壳底部还装有放油螺塞,通常放油螺塞上装有永久磁铁,以吸附润滑油中的金属屑,减少发动机的磨损。在上下曲轴箱接合面之间装有衬垫,防止润滑油泄漏。 三. 气缸盖(图2-7) 气缸盖安装在气缸体的上面,从上部密封气缸并构成燃烧室。它经常与高温高压燃气相接触,因此承受很大的热负荷和机械负荷。水冷发动机的气缸盖内部制有冷却水套,缸盖下端面的冷却水孔与缸体

17、的冷却水孔相通。利用循环水来冷却燃烧室等高温部分。缸盖上还装有进、排气门座,气门导管孔,用于安装进、排气门,还有进气通道和排气通道等。汽油机的气缸盖上加工有安装火花塞的孔,而柴油机的气缸盖上加工有安装喷油器的孔。顶置凸轮轴式发动机的气缸盖上还加工有凸轮轴轴承孔,用以安装凸轮轴。 图2-7 气缸盖一般采用灰铸铁或合金铸铁铸成,铝合金的导热性好,有利于提高压缩比,所以近年来铝合金气缸盖被采用得越来越多。 气缸盖是燃烧室的组成部分,燃烧室的形状对发动机的工作影响很大,由于汽油机和柴油机的燃烧方式不同,其气缸盖上组成燃烧室的部分差别较大。汽油机的燃烧室主要在气缸盖上,而柴油机的燃烧室主要在活塞顶部的凹

18、坑。这里只介绍汽油机的燃烧室,而柴油机的燃烧室放在柴油供给系里介绍。 汽油机燃烧室常见的三种形式: (1) 半球形燃烧室 半球形燃烧室结构紧凑,火花塞布置在燃烧室中央,火焰行程短,故燃烧速率高,散热少,热效率高。这种燃烧室结构上也允许气门双行排列,进气口直径较大,故充气效率较高,虽然使配气机构变得较复杂,但有利于排气净化,在轿车发动机上被广泛地应用。 (2) 楔形燃烧室 楔形燃烧室结构简单、紧凑,散热面积小,热损失也小,能保证混合气在压缩行程中形成良好的涡流运动,有利于提高混合气的混合质量,进气阻力小,提高了充气效率。气门排成一列,使配气机构简单,但火花塞置于楔形燃烧室高处,火焰传播距离长些,

19、切诺基轿车发动机采用这种形式的燃烧室。 (3) 盆形燃烧室 盆形燃烧室,气缸盖工艺性好,制造成本低,但因气门直径易受限制,进、排气效果要比半球形燃烧室差。捷达轿车发动机、奥迪轿车发动机采用盆形燃烧室。四. 气缸垫(图2-9)气缸垫装在气缸盖和气缸体之间,其功用是保证气缸盖与气缸体接触面的密封,防止漏气,漏水和漏油。 气缸垫的材料要有一定的弹性,能补偿结合面的不平度,以确保密封,同时要有好的耐热性和耐压性,在高温高压下不烧损、不变形。目前应用较多的是铜皮棉结构的气缸垫,由于铜皮棉气缸垫翻边处有三层铜皮,压紧时较之石棉不易变形。有的发动机还采用在石棉中心用编织的纲丝网或有孔钢板为骨架,两面用石棉及

20、橡胶粘结剂压成的气缸垫。 安装气缸垫时,首先要检查气缸垫的质量和完好程度,所有气缸垫上的孔要和气缸体上的孔对齐。其次要严格按照说明书上的要求上好气缸盖螺栓。拧紧气缸盖螺栓时,必须由中央对称地向四周扩展的顺序分23次进行,最后一次拧紧到规定的力矩。汽车点火系专题:点火系的概述汽油机在压缩接近上止点时,可燃混合气是由火花塞点燃的,从而燃烧对外作功,为此,汽油机的燃烧室中都装有火花塞。火花塞有一个中心电极和一个侧电极,两电极之间是绝缘的。当在火花塞两电极间加上直流电压并且电压升高到一定值时,火花塞两电极之间的间隙就会被击穿而产生电火花,能够在火花塞两电极间产生电火花所需要的最低电压称为击穿电压;能够

21、在火花塞两电极间产生电火花的全部设备称为发动机点火系(如下图)。汽车发动机的点火系同汽车上的其它电器设备一样采用单线制连接,即一端搭铁无论是正极搭铁还是负极搭铁,均应保证点火瞬间火花塞中心电极为负,因为,热的金属表面比冷的金属表面容易发射电子,发动机工作时,火花塞的中心电极较侧电极温度高。 点火系按照组成和产生高压电方法不同,可以分为分类与组成电源 产生高压的方法 1蓄电池点火系 蓄电池或发电机 点火线圈和断电器 2半导体点火系 蓄电池或发电机 点火线圈和半导体元件3磁电机点火系 无发动机电喷系统的分类 (1)单点喷射(SPI)系统:在进气管节流阀上方装1个中央喷射装置,用l2个喷油器集中喷射

22、。汽油喷人进气气流中,形成的可燃混合气由进气歧管分配到各个气缸中。单点喷射又称为节流阀体喷射(TBI)或中央燃油喷射(CFI)。单点喷射系统成本较低,仅略高于传统的化油器。目前,在国内外普及型轿车上被广泛应用。(2)多点喷射(MPI)系统:在每个气缸内装有1个喷油器,电控单元(ECU)控制并按顺序对各缸进行单独喷射或分组喷射,将汽油直接喷射到各缸进气门上方。多点喷射系统的燃油分配均匀性好,进气管可按最大气量来设计。由于它直接控制空燃比,因此,无论发动机处于冷态或热态,其过渡的响应及燃油经济性都是最佳的。但其缺点是,控制系统较复杂、成本较高。主要用于对一些豪华轿车上。 2.按有无反馈信号分类 (

23、1)开环控制系统:把实验得到的发动机各种工况下的最佳供油参数预先存人计算机内,发动机运行时,计算机根据各个传感器的输入信号,判断自身所处的运行工况,计算出最佳供油量。经功率放大器控制喷油器的喷射时间从而精确地控制混合气空燃比的大小,使发动机处于最佳工作状态。(2)闭环控制系统:根据安装在排气管上的氧传感器的信号确定出混合气空燃比的大小。通过计算机与设定的目标空燃比值进行比较,再将误差信号经放大器,控制电磁喷油器喷油量,使空燃比值保持在设定的目标值附近。发动机冷却系 汽车发动机是将热能转变为机械能的机器。然而,发动机只应用于热能的三分之一,其余热量的大部分被排气所带走,剩余的则被发动机零部件吸收

24、。众所周知,在可燃混合气的燃烧过程中,气缸内气体温度可高达20732375K。那些直接与高温气体接触的机件(如气缸体,气缸盖、活塞、气门等)若不及时冷却,则其中运动机件将可能因受热膨胀而破坏正常间隙,或因润滑油在高温下失效而卡死,各机件也可能因高温而导致其机械强度降低甚至损坏。因此,为保证发动机正常工作,必须对这些在高温条件下工作的机件加以冷却。发动机的冷却必须适度。若发动机冷却不足.由于气缸充气量减少和燃烧不正常,发动机功率将下降,且发动机零件也会因润滑不良而加速磨损。但若冷却过度,由于热量散失过多,使转变成有用功的热量减少,同时由于混合气与冷气缸壁接触,使其中原已汽化的燃油又凝结并流到曲轴

25、箱内,不仅增加了燃油消耗,且使润滑油变稀而影响润滑,结果也使发动机功率下降,磨损加剧,因此,冷却系的任务就是使工作中的发动机得到适度的冷却,从而保持在最适宜的温度范围工作。发动机的正常工作温度是353363K,温度的高低用冷却介质的温度来衡量,过高过低都不好。发动机用韵冷却用水,最好是软水(含矿物质少的水)。因为,硬水易产生水垢而堵塞通道,破坏水的冷却循环。冬季使用冷却水,要使用防冻水。为了解降低冷却水的冰点,以适应冬季行车的需要,可在冷却水中加入适量的乙二醇或甘油乙醇等。当乙醇的加入量为54%时,冰点就可以降至234K(一30度)。目前车上已普遍使用配制好的防冻液。使用中应注意,切勿吸人口中

26、,以免中毒。上海桑塔纳发动机用的冷却液,是“大众公司”专用的冷却添加剂G11,与水混合而成。它能防冻、防腐蚀,防止水垢的形成和提高水的沸点等作用。可永久使用,发动机中使高温零件的热量直接散人大气而进行冷却的一系列装置称为风冷系,而使这些热量先传导给水,然后再散人大气而进行冷却的一系列装置则称为水冷系。目前汽车发动机上广泛采用的是水冷系,部分汽车发动机(特别是小排量发动机)则采用风冷系。风冷系与水冷系比较,其结构简单,使用和维修方便,由、于发动机与空气间温差大,故风冷系的散热能力对气温变化不敏感。但风冷系还存在冷却不够可靠,消耗功率大和噪声大等缺点。发动机水冷系的组成及水路 水冷系的组成及水路(

27、组图) 目前.汽车发动机上采用的水冷系;大都是用水泵强制水(或冷却液)在冷却系中进行循环流动,称强制循环式水冷系。图示是强制循环式水冷却系示意图。它具有较完善的冷却调节,控制功能,当发动机冷车起动时,工作温度偏低,节温器4的主阀门关闭,副阀门开启,冷却水由水泵8进入分水管7,经水套6由上出水口通过节温器的副阀门直接流向水泵(不经散热器12),由水泵提高水压后再进入分水管,这称为水冷却系的小循环。发动机的温度会迅速升高,当水温升到353K(80度);以上时节温器的主阀门开启,副阀门关闭,水套中的冷却水由上出水口经节温器主阀门流向上贮水箱1,经散热器12冷却后进人下贮水箱10,从下水管被吸入水泵,

28、提高压力,再泵入分水管7,这称为冷却系的大循环。冷却系还利用风扇3的强力抽吸,使空气从前向后高速通过散热器,如快水的散热能力。为提高水冷却强度,克服冷却中不的溢出和蒸发,目前汽车已多用封闭式泵循环水冷系统。当发动机处于冷态或温度较低时,冷却液流经的路线为小循环。这样,冷却液不流经散热器。只有当冷却液的温度达到一定数值后,冷却液才进入大循环。这样,可减少发动机的升温时间,有效地降低能量损失和机件磨损。冷却的循环路线是由位于水泵下部的节温器控制的。当冷却液的温度达到-358K(85度)时,节温器阀门开启,冷却液开始流经散热器,进入大循环。当冷却液,温度达到378K(105度)时,节温器的阀门全部打

29、开,加强了冷却液循环和散热能力,控制了冷却液温度的上升。发动机润滑系发动机的润滑是由润滑系来实现的。润滑系的基本任务就是将润滑油不断地供给各零件的摩擦表面,减少零件的摩擦和磨损。润滑系虽然不参加发动机功能转换,却能保证发动机正常工作,使其具有较长的使用寿命。 润滑系的主要作用就是对发动机主要摩擦零件进行润滑。润滑系的润滑油流经各零件表面时,还会带走零件摩擦产生的热量,洗掉零件表面的金属磨屑,空气带人的尘土及燃烧产生的炭粒等杂质(这些作用对气缸壁来说,尤为重要)。在零件表面形成的油膜,还会保护零件免受水、空气和燃气的直接作用,防止零件受到化学及氧的腐蚀,润滑油有一定的粘性,可以填补缸壁与活塞环之

30、间的微小间隙,减少气体的泄漏,起到密封作用。所以润滑油的作用除润滑外,还具有散热、清洗、保护及密封等作用。 发动机各零件的润滑强度取决于该零件的环境、相对运动速度和承受机械负荷、热负荷的大小。根据润滑强度的不同,发动机润滑系采用下面几种润滑方式:(1)压力润滑:利用机油泵,将具有一定压力的润滑油源源不断地送到摩擦面间。形成具有一定厚度并能承受一定机械负荷而不破裂的油膜,尽量将两摩:擦零件完全隔开,实现可靠的润滑。(2)飞溅润滑:利用发动机工作时某些运动零件(主要是曲轴与凸轮轴)飞溅起的油滴与油雾,对摩擦表面进行润滑的一种方式。飞溅润滑适合于暴露零件表面,如缸壁、凸轮等;相对运动速度较低的零件,

31、如活塞销等;机械负荷较轻的零件,如挺柱等。气缸壁采用飞溅润滑还可防止由于润滑油压力过高,油量过大,进入燃烧室导致发动机工作条件恶化。(3)定期润滑:对一些不太重要、分散的部位,采用定期加注润滑脂的方式进行润滑,如发动机水泵轴承、发电机、起动机及分电器等总成的润滑,即采用这种方式。 一般发动机的润滑系组成大体相同,由下面这些装置组成。油底壳一用来贮存润滑油。在大多数发动机上,油底壳还起到为润滑油散热的作用。机油泵一将二定量的润滑油从油底壳中抽出加压后,源源不断地送至各零件表面进行润滑,维持润滑油在润滑系中的循环。机油泵大多装于曲轴箱内,也有些柴油机将机油泵装于曲轴箱外面,机油泵都采用齿轮驱动方式

32、,通过凸轮轴、曲轴或正时齿轮来驱动。机油滤清器一用来过滤掉润滑油中的杂质、磨屑、油泥及水分等杂物,使送到各润滑部位的都是-干净清洁的润滑油。由于过滤能力与流动阻力成正比,润滑系的滤清器按过滤能分成三种,设于润滑系不同部位。机油集滤器多为滤网式,能滤掉润滑油中粒度大的杂质,其流动阻力小,串联安装于机油泵进油口之前。机油粗滤器用来滤掉润滑油中粒度较大的杂质,其流动阻力小,串联安装于机油泵出口与主油道之间。机油细滤器能滤掉润滑油中的细小杂质,但流动阻力较大,故多与主油道并联,只有少量的润滑油通过细滤器过滤。主油道一是润滑系的重要组成部分,直接在缸体与缸盖上铸出,用来向各润滑部位输送润滑油。限压阀用来

33、限制机油泵输出的润滑油压力。旁通阀与粗滤器并联,当粗滤器发生堵塞时,旁通阀打开,机油泵输出的润滑油直接进入主油道。机油细滤器进油限压阀用来限制进入细滤器的油量,防止因进入细滤器的油量过多,导致主油道压力降低而影响润滑。润滑系还设有机油压力表、油温表等。某些热负荷较大的发动机,如越野汽车发动机和柴油发动机上,还设有润滑油散热器,对润滑油进行散热冷却。曲轴连杆机构曲轴连杆机构是往复式内燃机的主要工作机构。在作功冲程,它将燃料燃烧产生的热能舌塞往复运动、曲轴旋转运动而转变为机械能,对外输出动力;在其他冲程,则依靠曲轴和飞轮的转动惯性、通过连杆带动活塞上下运动,为下一次作功创造条件。曲轴连杆机构由气缸

34、体曲轴箱组、活塞连杆组以及曲轴飞轮组三个部分组成。在高温、高压、高速以及化学腐蚀条件下工作的曲轴连杆机构受到各种力的作用。例如,在气缸中作往复运动的机件,要受到气体力、惯性力的作用;旋转机件要受到离心力的作用;相对运动机件要受到摩擦力的作用。这些力作用在曲轴连杆机构上,会使各传动机件受到拉伸、压缩和弯扭等不同形式的载荷。因此,在结构和选材上必须采取相应的措施。配气机构配气机构 配气机构的功用是按照发动机每一气缸内所进行的工作循环和发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜充量得以及时进入气缸,废气得以及时从气缸排出;在压缩与膨胀行程中,保证燃烧室的密封。新鲜充量对于汽油机而言是汽

35、油和空气的棍合气,对于柴油机而言是纯空气。新鲜充量充满气缸的程度用充气效率表示。充气效率越高,表明进入气缸内的新鲜充量的质量越大,可燃混合气燃烧时可能放出的热量愈大,发动机发出的功率也愈大。配气机构可从不同角度来分类。按气门的布置分为气门顶置和气门侧置式;按凸轮轴的布置位置分为下置式、中置式和上置式;按曲轴和凸轮轴的传动方式分为齿轮传动式、链条传动式和齿带传动式;按每气缸气门数目分,有二气门式和四气门式等。配气机构的总布置配气机构的组成与工作情况 各式配气机构中,按其功用都可分为气门组和气门传动组两大部分。气门组包括气门及与之相关联的零件,其组成与配气机构的型式基本无关。气门传动组、是从正时齿

36、轮开始至推动气门动作的所有零件,其组成视配气机构的形式而有所不同,它的功用是定时驱动气门使其开闭。1.气门顶置式配气机构 进气门和排气门都倒挂在气缸盖上,其组成如图31所示。气门组包括气门、气门导管、气门座、弹簧座、气门弹簧、锁片等零件;气门传动组一般由摇臂、摇臂轴、推杆、挺柱、凸轮轴和正时齿轮组成。气门顶置式配气机构的工作情况是:当气缸的工作循环需要将气门打开进行换气时,由曲轴通过传动机构驱动凸轮轴旋转,使凸轮轴上的凸轮凸起部分通过挺柱、推杆、调整螺钉推动摇臂摆转,摇臂的另一端便向下推开气门,同时使弹簧进一步压缩。当凸轮的凸起部分的顶点转过挺柱以后,便逐渐减小了对挺柱的推力,气门在弹簧张力的

37、作用下开度逐渐减小,直至最后关闭。压缩和做功行程中,气门在弹簧张力的作用下严密关闭。气门顶置式配气机构根据凸轮轴的位置有以下三种型式: (1)凸轮轴下置式配气机构(图32所示);凸轮轴装在曲轴箱内,直接由凸轮轴正时齿轮与曲轴正时齿轮相啮合,由曲轴带动。气门传动组包括上述全部零件,其应用最为广泛。(2)凸轮轴中置式配气机构(图33所示):凸轮轴位于气缸体的上部。为了减小气门传动机构的往复运动的质量,对于高转速的发动机,可将凸轮轴的位置移到气缸体的上部,由凸轮轴经过挺柱直接驱动摇臂而省去推杆。该形式的配气机构因曲轴与凸轮轴的中心线距离较远,一般要在中间加入一个中间齿轮(惰轮)。(3)凸轮轴上置式配

38、气机构:凸轮轴布置在气缸盖上。凸轮轴直接通过摇臂来驱动气门,没有挺柱和推杆,使往复运动的质量大为减小,对凸轮轴和气门弹簧的要求也最低,因此它适用于高速强化发动机。桑塔纳轿车发动机上采用;的气门顶置凸轮轴上置式配气机构,与同类上置凸轮轴式配气机构相比有较大不同。它取消了凸轮支座和摇臂等零件,凸轮轴,直接装在由缸盖上平面和五个轴承孔合成的轴承孔内,气门顶置式配气机构由于进、排气通道拐弯少、气流阻力较小,气体进出较通畅,使得进气较充分,同时气门的布置与燃烧室配含绪树紧凑,有利于混合气的形成和燃烧,所以动力性和经济性较好。 目前国产汽车发动机都;采用气门顶置式配气机构,如CAl091型、东风EQl09

39、0E型、上海桑塔纳轿车等。四行程发动机每完成一个工作循环,曲轴旋转两圈,各缸的进、排气门各开启一次,即凸轮轴只转一圈,所以曲轴与凸轮轴的传动比为2:1。 进气门和排气、门都装置在气缸体的一侧。涡轮增压器的使用现在国内很多车型的汽油发动机都应用了废气涡轮增压器技术,这项技术不仅可以提高功率,还可以增大扭矩,但是具有这种结构的发动机在使用时应注意一些问题,否则会造成涡轮增压器的过早损坏。首先说说涡轮增压器的大概结构原理,废气涡轮增压器主要由泵轮和涡轮组成,当然还有其他一些控制元件。泵轮和涡轮由一根轴相连,也就是转子,发动机排出的废气驱动泵轮,泵轮带动涡轮旋转,涡轮转动后给进气系统增压。增压器安装在

40、发动机的排气一侧,所以增压器的工作温度很高,而且增压器在工作时转子的转速非常高,可达到每分钟十几万转,如此高的转速和温度使得常见的机械滚针或滚珠轴承无法为转子工作,因此涡轮增压器普遍采用全浮动轴承,由机油来进行润滑,还有冷却液为增压器进行冷却。所以针对这种结构原理,在使用这种发动机时应注意一些问题:1.发动机启动后应怠速运转一会儿,使润滑油达到一定的工作温度和压力,以免突然增加负荷时因轴承无油而加速磨损,甚至卡死。 2.车辆停车时由于增压器转子转动具有一定惯性,所以发动机不要立即熄火,应怠速运转一段时间,以使增压器转子的温度和转速逐渐下降。立即熄火会使机油丧失压力,转子靠惯性转动时得不到润滑而

41、损坏。 3.经常检查机油油量,避免因缺少机油而导致轴承失效及转动件卡死。 4.定期更换机油及机滤,因全浮动轴承对润滑油的要求很高,应使用厂家规定牌号机油。 5.定期清洗更换空气滤芯,空滤过脏会造成进气阻力增加,使发动机功率下降。 6.经常检查进气系统的密闭性,漏气会使灰尘吸入增压器及发动机,损坏增压器和发动机。 7.由于涡轮增压器转子轴承精密度很高,维修及安装时的工作环境要求很严格,所以增压器出现故障或损坏时应到指定的维修站进行维修。发动机噪音问题 当针对发动机噪音过大进行故障诊断时,首先要排除由附件引起的噪音,诸如由空气压缩机和取力器产生的,不要把这些噪音误认为是发动机的噪音。拆下附件驱动皮

42、带以排除由这些装置引起的噪音。噪音也会传播到那些本来没有问题的金属零件上。故使用听诊器将有助于确定产生发动机噪音的位置。 听到的若随曲轴转速(发动机转速)变化,则该噪音可能与曲轴、连杆、活塞、活塞销有关。听到的噪音若随凸轮轴转速(发动机的半速)变化,则该噪音可能与气门传动部件有关。手持数字式转速表能够帮助判断该噪音是否与以曲轴或凸轮轴的转速运转的部件有关。 发动机噪音有时能通过一次拆下一个喷油器的柱塞而被隔离。如果噪音音量减少或消失,那么该噪音与它所在的那个特定的发动机气缸有关。 确定噪音的来源是没有固定的规则或测试方法的。 由发动机驱动的部件和附件,诸如齿轮驱动风扇离合器、液压泵、皮带驱动的

43、充电机、空调压缩机以及增压器都有可能构成发动机的噪音。以下信息可用于指导诊断发动机的噪音: 主轴承噪声 主轴承松动所产生的敲击噪音可以在发动机带负载时被听到,它的响声大而沉闷。如果所有的主轴承全都松动,将会听到的是响亮而短促的敲击声。这种敲击声是有规律的,且随转速而变化。当发动机在负载拖拉或者重载行驶时,这种噪音最为响亮这种敲击的声音比连杆产生的噪音沉闷。低机油压力也将伴随这种情况产生。 如果轴承没有松动到足以使自己单独的产生敲击的声音时,如果机油太稀薄或者轴承上没有任何机油,轴承会产生敲击噪音。 一种不规则的噪音可能表明曲轴止推轴承磨损。 间歇式的尖锐敲击声表明曲轴向间隙过大。重复离合器离合

44、动作可能引起该噪音的变化。 连杆轴承噪声 连杆间隙过量会引起在发动机的各种转速下,即怠速和载荷工况下的敲击造噪音。当轴承开始变得松动时,该噪音可能与活塞的拍击声或者松动的活塞销的噪音混淆在一起。噪音的音量随发动机的转速增加。低机油压力也将伴随这种情况产生。 活塞噪声 最困难的是指出活塞销、连杆以及活塞噪音之间的区别。松动的活塞造成的双击敲击声,通常在发动机怠速运转时可以被听到。当这个气缸的喷油器被拆下时,这种敲击的声音将会发生明显的改变。然而,在某些发动机上,当车辆以稳定的的速度在道路上行驶时,这种敲击的声音反而变得更加明显。发动机的负荷特性分析及其意义发动机诸性能特性中有一个叫做负荷特性,它

45、是指当发动机转速一定时,经济性指标的有效比燃油消耗量随发动机负荷的变化关系。利用这一变化曲线,可最全面地确定发动机在各种负荷和转速时的经济性。在了解负荷特性前,首先要知道有效比燃油消耗量是什么。衡量汽车耗油量大小一般用汽车在规定的速度下行驶100公里路程的实际耗油量(升)计算。例如汽车技术参数上常见有“90公里/小时等速”时100公里耗油量的参数,这是衡量汽车经济性指标。衡量发动机经济性指标,工程技术人员用有效比燃油消耗量这一个指标,简称油耗率,用ge表示,它指每小时单位有效功率消耗的燃油量,单位是g/kw.h。当然,衡量发动机经济性还有其它指标,由于与本文关系不大不作介绍。发动机分为汽油机和

46、柴油机两大类。汽油机是依靠节气门调节负荷的,因此汽油机负荷特性又称节流特性;柴油机是靠改变喷油量来调节负荷的,通过喷油量变化改变混合气成份,因此柴油机负荷特性又称燃油调整特性。由于发动机转速是经常变化的,需要测定发动机不同转速下的负荷特性,才能全面评价不同转速和不同负荷下发动机的燃油经济性。发动机负荷特性的读取在试验台架上进行。以汽油机为例,启动发动机后逐渐开启节气门,直至最大,同时调节载荷使发动机保持某一转速稳定运行,测定此工况下发动机输出功率及燃油消耗量。然后再关小节气门,调整载荷使发动机保持转速不变再测定。如此依次进行下去,直到发动机能保持稳定工作的最小节气门开度,得到不同负荷和转速下的燃油消耗量。不同转速下的发动机负荷特性曲线变化的趋势是差不多,只是具体数值的不同。普通汽油机负荷特性曲线的特征,开始启动时ge最大(此时需要浓混合气),但随节气门逐渐开启负荷增大而ge减少直至最低点,此时节气门接近全开。继续开大节气门,ge又会开始上升,曲线呈现一条内凹抛物线。曲线的最小ge值越低越好,同时ge随负荷的变

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com