二级齿轮减速器外文翻译解读.docx

上传人:叶*** 文档编号:35552399 上传时间:2022-08-22 格式:DOCX 页数:8 大小:21.24KB
返回 下载 相关 举报
二级齿轮减速器外文翻译解读.docx_第1页
第1页 / 共8页
二级齿轮减速器外文翻译解读.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《二级齿轮减速器外文翻译解读.docx》由会员分享,可在线阅读,更多相关《二级齿轮减速器外文翻译解读.docx(8页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、The gear and shaftReducer is a dynamic communication agencies, the use of gear speed converters, motor rotational speed reducer to the Rotary to be few, and have greater torque institutions. General helical gear reducer has reducer (including parallel shaft helical gear reducer, a worm reducer, beve

2、l gear reducer, etc.), planetary gear reducer, Cycloid reducer, a worm reducer, a planetary friction CVT mechanical machines.The important position of the wheel gear and shaft cant falter in the design of he passing to process to make them can is divided into many model numbers , using for many situ

3、ations respectively .So we must be the multilayer to the understanding of the wheel gear and shaft in reducer.In the force analysis of spur gears, the forces are assumed to act in a single plane. We shall study gears in which the forces have three dimensions. The reason for this, in the case of heli

4、cal gears, is that the teeth are not parallel to the axis of rotation. And in the case of bevel gears, the rotational axes are not parallel to each other. There are also other reasons, as we shall learn.Helical gears are used to transmit motion between parallel shafts. The helix angle is the same on

5、 each gear, but one gear must have a right-hand helix and the other a left-hand helix. The shape of the tooth is an involutes helicoids. If a piece of paper cut in the shape of a parallelogram is wrapped around a cylinder, the angular edge of the paper becomes a helix. If we unwind this paper, each

6、point on the angular edge generates an involutes curve. The surface obtained when every point on the edge generates an involutes is called an involutes helicoids.The initial contact of spur-gear teeth is a line extending all the way across the face of the tooth. The initial contact of helical gear t

7、eeth is a point, which changes into a line as the teeth come into more engagement. In spur gears the line of contact is parallel to the axis of the rotation; in helical gears, the line is diagonal across the face of the tooth. It is this gradual of the teeth and the smooth transfer of load from one

8、tooth to another, which give helical gears the ability to transmit heavy loads at high speeds. Helical gears subject the shaft bearings to both radial and thrust loads. When the thrust loads become high or are objectionable for other reasons, it may be desirable to use double helical gears. A double

9、 helical gear (herringbone) is equivalent to two helical gears of opposite hand, mounted side by side on the same shaft. They develop opposite thrust reactions and thus cancel out the thrust load. When two or more single helical gears are mounted on the same shaft, the hand of the gears should be se

10、lected so as to produce the minimum thrust load.Crossed-helical, or spiral, gears are those in which the shaft centerlines are neither parallel nor intersecting. The teeth of crossed-helical fears have point contact with each other, which changes to line contact as the gears wear in. For this reason

11、 they will carry out very small loads and are mainly for instrumental applications, and are definitely not recommended for use in the transmission of power. There is on difference between a crossed helical. Gear and helical gear until they are mounted in mesh with each other. They are manufactured i

12、n the same way. A pair of meshed crossed helical gears usually have the same hand; that is a right-hand driver goes with a right-hand driven. In the design of crossed-helical gears, the minimum sliding velocity is obtained when the helix angle are equal. However, when the helix angle are not equal,

13、the gear with the helix angle should be used as the driver if both gears have the same hand.Worm gears are similar to crossed helical gears. The pinion or worm has a small number of teeth, usually one to four, and since they completely wrap around the pitch cylinder they are called threads. Its mati

14、ng gear is called a worm gear, which is not a true helical gear. A worm and worm gear are used to provide a high angular-velocity reduction between nonintersecting shafts which are usually at right angle. The worm gear is not a helical gear because its face is made concave to fit the curvature of th

15、e worm in order to provide line contact instead of point contact. However, a disadvantage of worm gearing is the high sliding velocities across the teeth, the same as with crossed helical gears.Worm gearing are either single or double enveloping. A single-enveloping gearing is one in which the gear

16、wraps around or partially encloses the worm. A gearing in which each element partially encloses the other is, of course, a double-enveloping worm gearing. The important difference between the two is that area contact exists between the teeth of double-enveloping gears while only line contact between

17、 those of single-enveloping gears. The worm and worm gear of a set have the same hand of helix as for crossed helical gears, but the helix angles are usually quite different. The helix angle on the worm is generally quite large, and that on the gear very small. Because of this, it is usual to specif

18、y the lead angle on the worm, which is the complement of the worm helix angle, and the helix angle on the gear; the two angles are equal for a 90-deg. Shaft angle.When gears are to be used to transmit motion between intersecting shaft, some of bevel gear is required. Although bevel gear are usually

19、made for a shaft angle of 90 deg. They may be produced for almost any shaft angle. The teeth may be cast, milled, or generated. Only the generated teeth may be classed as accurate. In a typical bevel gear mounting, one of the gear is often mounted outboard of the bearing. This means that shaft defle

20、ction can be more pronounced and have a greater effect on the contact of teeth. Another difficulty, which occurs in predicting the stress in bevel-gear teeth, is the fact the teeth are tapered.Straight bevel gears are easy to design and simple to manufacture and give very good results in service if

21、they are mounted accurately and positively. As in the case of spur gears, however, they become noisy at higher values of the pitch-line velocity. In these cases it is often good design practice to go to the spiral bevel gear, which is the bevel counterpart of the helical gear. As in the case of heli

22、cal gears, spiral bevel gears give a much smoother tooth action than straight bevel gears, and hence are useful where high speed are encountered. It is frequently desirable, as in the case of automotive differential applications, to have gearing similar to bevel gears but with the shaft offset. Such

23、 gears are called hypoid gears because their pitch surfaces are hyperboloids of revolution. The tooth action between such gears is a combination of rolling and sliding along a straight line and has much in common with that of worm gears.A shaft is a rotating or stationary member, usually of circular

24、 cross section, having mounted upon it such elements as gears, pulleys, flywheels, cranks, sprockets, and other power-transmission elements. Shaft may be subjected to bending, tension, compression, or tensional loads, acting singly or in combination with one another. When they are combined, one may

25、expect to find both static and fatigue strength to be important design considerations, since a single shaft may be subjected to static stresses, completely reversed, and repeated stresses, all acting at the same time.The word “shaft” covers numerous variations, such as axles and spindles. An axle is

26、 a shaft, wither stationary or rotating, nor subjected to torsion load. A shirt rotating shaft is often called a spindle.When either the lateral or the tensional deflection of a shaft must be held to close limits, the shaft must be sized on the basis of deflection before analyzing the stresses. The

27、reason for this is that, if the shaft is made stiff enough so that the deflection is not too large, it is probable that the resulting stresses will be safe. But by no means should the designer assume that they are safe,it is almost always necessary to calculate them so that he knows they are within

28、acceptable limits. Whenever possible, the power-transmission elements,such as gears or pullets, should be located close to the supporting bearings, This reduces the bending moment, and hence the deflection and bending stress.Although the von Mises-Hencky-Goodman method is difficult to use in design

29、of shaft, it probably comes closest to predicting actual failure. Thus it is a good way of checking a shaft that has already been designed or of discovering why a particular shaft has failed in service. Furthermore, there are a considerable number of shaft-design problems in which the dimension are

30、pretty well limited by other considerations, such as rigidity, and it is only necessary for the designer to discover something about the fillet sizes, heat-treatment, and surface finish and whether or not shot preening is necessary in order to achieve the required life and reliability.Because of the

31、 similarity of their functions, clutches and brakes are treated together. In a simplified dynamic representation of a friction clutch, or brake, two inertias I1 and I2 traveling at the respective angular velocities W1 and W2, one of which may be zero in the case of brake, are to be brought to the sa

32、me speed by engaging the clutch or brake. Slippage occurs because the two elements are running at different speeds and energy is dissipated during actuation, resulting in a temperature rise. In analyzing the performance of these devices we shall be interested in the actuating force, the torque trans

33、mitted, the energy loss and the temperature rise. The torque transmitted is related to the actuating force, the coefficient of friction, and the geometry of the clutch or brake. This is problem in static, which will have to be studied separately for earth geometric configuration. However, temperatur

34、e rise is related to energy loss and can be studied without regard to the type of brake or clutch because the geometry of interest is the heat-dissipating surfaces. The various types of clutches and brakes may be classified as fellows.1. Rim type with internally expanding shoes2. Rim type with exter

35、nally contracting shoes 3. Band type4. Disk or axial type5. Cone type6. Miscellaneous typeThe analysis of all type of friction clutches and brakes use the same general procedure. The following step are necessary:1. Assume or determine the distribution of pressure on the frictional surfaces.2. Find a

36、 relation between the maximum pressure and the pressure at any point.3. Apply the condition of statically equilibrium to find (a) the actuating force, (b) the torque, and (c) the support reactions.Miscellaneous clutches include several types, such as the positive-contact clutches, overload-release c

37、lutches, overrunning clutches, magnetic fluid clutches, and others. A positive-contact clutch consists of a shift lever and two jaws. The greatest differences between the various types of positive clutches are concerned with the design of the jaws. To provide a longer period of time for shift action

38、 during engagement, the jaws may be ratchet-shaped, or gear-tooth-shaped. Sometimes a great many teeth or jaws are used, and they may be cut either circumferentially, so that they engage by cylindrical mating, or on the faces of the mating elements.Although positive clutches are not used to the exte

39、nt of the frictional-contact type, they do have important applications where synchronous operation is required. Devices such as linear drives or motor-operated screw drivers must run to definite limit and then come to a stop. An overload-release type of clutch is required for these applications. The

40、se clutches are usually spring-loaded so as to release at a predetermined toque. The clicking sound which is heard when the overload point is reached is considered to be a desirable signal.An overrunning clutch or coupling permits the driven member of a machine to “freewheel” or “overrun” because th

41、e driver is stopped or because another source of power increase the speed of the driven. This type of clutch usually uses rollers or balls mounted between an outer sieve and an inner member having flats machined around the periphery. Driving action is obtained by wedging the rollers between the slee

42、ve and the flats. The clutch is obtained by wedging the rollers between the sleeve and the flats. The clutch is therefore equivalent to a pawl and ratchet with an infinite number of teeth.Magnetic fluid clutch or brake is a relatively new development which has two parallel magnetic plates. Between t

43、hese plates is a lubricated magnetic powder mixture. An electromagnetic coil is inserted somewhere in the magnetic circuit. By varying the excitation to this coil, the shearing strength of the magnetic fluid mixture may be accurately controlled. Thus any condition from a full slip to a frozen lockup

44、 may be obtained .齿轮和轴的介绍减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。一般的减速器有斜齿轮减速器(包括平行轴斜齿轮减速器、蜗轮减速器、锥齿轮减速器等等)、行星齿轮减速器、摆线针轮减速器、蜗轮蜗杆减速器、行星摩擦式机械无级变速机等等。在减速器设计中齿轮和轴的重要地位是不可动摇的。齿轮和轴主要安装在主轴箱来传递力的方向。通过加工制造它们可以分为许多的型号,分别用于许多的场合。所以我们对齿轮和轴的了解和认识必须是多层次多方位的。在直齿圆柱齿轮的受力分析中,是假定各力作用在单一平面的。我们将研究作用力具有三维坐标的齿轮

45、。因此,在斜齿轮的情况下,其齿向是不平行于回转轴线的。而在锥齿轮的情况中各回转轴线互相不平行。这还有其他道理值得我们学习就像我们讨论的那样。斜齿轮用于传递平行轴之间的运动。倾斜角度每个齿轮都一样,但一个必须是右旋斜齿,而另一个必须是左旋斜齿。齿的形状是一渐开线螺旋面。如果一张被剪成平行四边形(矩形)的纸张包围在齿轮圆柱体上,纸上印出齿的角刃边就变成斜线。如果我展开这张纸,在血角刃边上的每一个点就发生一渐开线曲线。直齿圆柱齿轮轮齿的初始接触处是跨过整个齿面而伸展开来的线。斜齿轮轮齿的初始接触是一点,当齿进入更多的啮合时,它就变成线。在直齿圆柱齿轮中,接触线是平行于回转轴线的。在斜齿轮中,该线是跨

46、过齿面的对角线。它是齿轮逐渐进行啮合并平稳的从一个齿到另一个齿传递运动,那样就使斜齿轮具有高速重载下平稳传递运动的能力。斜齿轮使轴的轴承承受径向和轴向力。当轴向推力变得大了或由于别的原因而产生某些影响时,那就可以使用人字齿轮。双斜齿轮(人字齿轮)是与反向并排地装在同一轴上的两个斜齿轮等效。他们产生相反的轴向推力作用,这样就消除了轴向推力。当两个或更多个单向齿斜齿轮被安装在同一轴上时,齿轮的齿向应作选择,以便产生最小的轴向推力。交错轴斜齿轮或螺旋齿轮,他们是轴中心线既不相交也不平行。交错轴斜齿轮的齿彼此之间发生点接触,它随着齿轮的磨合而变成线接触。因此他们只能传递小的载荷和主要用于仪器设备中,而

47、且肯定不能推荐在动力传动中使用。交错轴斜齿轮与斜齿轮之间在被安装后互相啮合之前是没有任何区别的。它们是以同样的方法进行制造。一对相啮合的交错轴斜齿轮通常具有同样的齿向,即右旋主动齿轮跟右旋从动齿轮相啮合。在交错轴斜齿设计中,当该齿的斜角相等时所产生滑移速度最小。然而当该齿的斜角不相等时,如果两个齿轮具有相同齿向的话,大斜角齿轮应用作主动齿轮。蜗轮与交错轴斜齿轮相似,小齿轮即蜗杆具有较小的齿数,通常是一到四齿,由于它们完全缠绕在节圆柱上,因此它们被称为螺纹齿。与其相配的齿轮叫做蜗轮,蜗轮不是真正的斜齿轮。蜗杆和蜗轮通常是用于向垂直相交轴之间的传动提供大的角速度减速比。蜗轮不是斜齿轮,因为其齿顶面

48、做成中凹形状以适配蜗杆曲率,目的是要形成线接触而不是点接触。然而就像交错轴斜齿轮那样,蜗杆蜗轮传动机构中存在齿间有较大滑移速度的缺点。蜗杆蜗轮机构有单包围和双包围机构。单包围机构就是蜗轮包裹或部分包裹着蜗杆的一种机构。当然,如果每个构件各自局部地包围着对方的蜗轮机构就是双包围蜗轮蜗杆机构。这两者之间的重要区别是,在双包围蜗轮组的轮齿间有面接触,而在单包围的蜗轮组的轮齿间有线接触。一个装置中的蜗杆和蜗轮正像交错轴斜齿轮那样具有相同的齿向,但是其斜齿齿角的角度是不相同的。蜗杆上的齿斜角度通常很大,而蜗轮上的则极小,因此习惯常规定蜗杆的导角就是蜗杆齿轮斜角的余角;也规定了蜗轮上的齿斜角,该两角之和就

49、等于90度的轴线交角。当齿轮是用来传递相交轴之间的运动时,就需要某种形式的锥齿轮。虽然锥齿轮通常制造成能构成90度轴交角,但它们也可产生任何角度的轴交角。轮齿可以铸出、铣制或滚切加工。仅就滚齿而言就可达一级精度。在典型的锥齿轮安装中,其中一个锥齿轮常常装于支承的外侧。这意味着轴的挠曲情况更加明显而使在轮齿接触上具有更大的影响。另外一个难题,发生在难于预示锥齿轮轮齿上的应力,实际上是由于齿轮被加工成锥状造成的。直齿锥齿轮易于设计且制造简单,如果他们安装的精密确定,在运转中会产生良好的效果。然而在直齿圆柱齿轮情况下,在节线速度较高时,他们将发出噪音。在这些情况下,螺旋锥齿轮比直齿轮能产生平稳的多的啮合作用,因此碰到高速运转的场合那是很有用的。当在汽车的各种不同用途中,有一个带偏心轴的类似锥齿轮的机构,那是常常所希望的。这样的齿轮机构叫做准双曲面齿轮机构,因为它们的节面是双曲回转面。这种齿轮之间的轮齿作用是沿着一根直线上产生滚动与滑动相结合的运动并和蜗轮蜗杆的轮齿作用有着更多的共同之处。轴是一种转动或静止的杆件,通常有圆形横截面。在轴上安装像齿

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com