锂电池知识普及之4-锂电池的能量密度和充放电倍率.docx

上传人:太** 文档编号:35050763 上传时间:2022-08-20 格式:DOCX 页数:9 大小:291.19KB
返回 下载 相关 举报
锂电池知识普及之4-锂电池的能量密度和充放电倍率.docx_第1页
第1页 / 共9页
锂电池知识普及之4-锂电池的能量密度和充放电倍率.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《锂电池知识普及之4-锂电池的能量密度和充放电倍率.docx》由会员分享,可在线阅读,更多相关《锂电池知识普及之4-锂电池的能量密度和充放电倍率.docx(9页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、JOHNSONTM锂电池知识普及之4锂电池的能量密度和充放电倍率锂电池已经与我们生活息息相关,我们吃穿住行都与之有着千丝万缕的关系,但 是很多人却对锂电池并不了解,这并不局限于普通的消费者,即使是各种电器的设计师对 于锂电池也是一知半解。下面惟尚将和大家一起分享下关于锂电池知识的系列文章,通过 这些文章大家将对锂电池产生一个系统的认识。一、什么是锂电池二、锂电池的八个重要参数三、锂电池的正负极材料四、锂电池的能量密度和充放电倍率五、锂电池的循环寿命和安全性能量密度和充放电倍率是对锂电池影响最大的两个参数,因为这两个参数直接决定了 锂电池使用过程中的类型选择及产品串并联方案等重要参数。接下来的内

2、容,我们将就锂 离子电池与能量相关的两个关键指标:能量密度和充放电倍率,展开一些简短的论述。能量密度,是单位体积或重量可以存储的能量多少,这个指标当然是越高越好,凡是 浓缩的都是精华嘛。充放电倍率,是能量存储和释放的速度,最好是秒速,瞬间存满或释 放,召之即来挥之即去。当然,这些都是理想,实际上受制于各种各样的现实因素,我们既不可能获得无限的 能量,也不可能实现能量的瞬间转移。如何不断的突破这些限制,达到更高的等级,就是 需要我们去解决的难题。五、锂离子电池的能量密度JOHNSON此外,隔离膜的吸液率? 口孔隙率也对锂离子的通过性有较大的影响,也会一定程度上影响锂离子电池的倍率性能(相对较小)

3、。JOHNSON可以说,能量密度是制约当前锂离子电池发展的最大瓶颈。不管是手机,还是电动汽 车,人们都期待电池的能量密度能够达到一个全新的量级,使得产品的续航时间或续航里 程不再成为困扰产品的主要因素。290101 长8下290101 长8下从铅酸电池、银镉电池、镇氢电池、再到锂离子电池,能量密度一直在不断的提升。 可是提升的速度相对于工业规模的发展速度而言,相对于人类对能量的需求程度而言,显 得太慢了。甚至有人戏言,人类的进步都被卡在“电池”这儿了。当然,如果哪一天能够 实现全球电力无线传输,到哪儿都能无线获得电能(像手机信号一样),那么人类也就 不再需要电池了,社会发展自然也就不会卡在电池

4、上面。针对能量密度成为瓶颈的现状,全球各国都制订了相关的电池产业政策目标,期望引 领电池行业在能量密度方面取得显著的突破。中、美、日等国政府或行业组织所制定的 2020年目标,基本上都指向300Wh/kg这一数值,相当于在当前的基础上提升接近1 倍。2030年的远期目标,则要达到500Wh/kg ,甚至700Wh/kg ,电池行业必须要有化 学体系的重大突破,才有可能实现这一目标。影响锂离子电池能量密度的因素有很多,就锂离子电池现有的化学体系和结构而言, 具体都有哪些明显的限制呢?JOHNSON前面我们分析过,充当电能载体的,其实就是电池当中的锂元素,其他物质都是废 物,可是要获得稳定的、持续

5、的、安全的电能载体,这些“废物又是不可或缺的。举 个例子,一块锂离子电池当中,锂元素的质量占比一般也就在1%多一点,其余99%的成 分都是不承担能量存储功能的其他物质。爱迪生有句名言,成功是99%的汗水加上1%的 天赋,看来这个道理放之四海皆准啊,1%是红花,剩下的99%就是绿叶,少了哪个都不 行。那么要提高能量密度,我们首先想到的就是提高锂元素的比例,同时要让尽可能多的 锂离子从正极跑出来,移动到负极,然后还得从负极原数返回正极(不能变少了),周而复 始的搬运能量。1 .提高正极活性物质的占比提高正极活性物质占比,主要是为了提高锂元素的占比,在同一个电池化学体系中, 锂元素的含量上去了(其他

6、条件不变),能量密度也会有相应的提升。所以在一定的体积和 重量限制下,我们希望正极活性物质多一些,再多一些。2 .提高负极活性物质的占比这个其实是为了配合正极活性物质的增加,需要更多的负极活性物质来容纳游过来的 锂离子,存储能量。如果负极活性物质不够,多出来的锂离子会沉积在负极表面,而不是 嵌入内部,出现不可逆的化学反应和电池容量衰减。3 .提高正极材料的比容量(克容量)正极活性物质的占比是有上限的,不能无限制提升。在正极活性物质总量一定的情况 下,只有尽可能多的锂离子从正极脱嵌,参与化学反应,才能提升能量密度。所以我们希 望可脱嵌的锂离子相对于正极活性物质的质量占比要高,也就是比容量指标要高

7、。这就是我们研究和选择不同的正极材料的原因,从钻酸锂到磷酸铁锂,再到三元材 料,都是奔着这个目标去的。JOHNSON前面已经分析过,钻酸锂可以达到137mAh/g ,镒酸锂和磷酸铁锂的实际值都在 120mAh/g左右,银钻镒三元则可以达到180mAh/go如果要再往上提升,就需要研究 新的正极材料,并取得产业化进展。4 .提高负极材料的比容量相对而言,负极材料的比容量还不是锂离子电池能量密度的主要瓶颈,但是如果进一 步提升负极的比容量,则意味着以质量更少的负极材料,就可以容纳更多的锂离子,从而 达到提升能量密度的目标。以石墨类碳材料做负极,理论比容量在372mAh/g ,在此基础上研究的硬碳材

8、料和纳 米碳材料,则可以将比容量提高到600mAh/g以上。锡基和硅基负极材料,也可以将负 极的比容量提升到一个很高的量级,这些都是当前研究的热点方向。5 .减重瘦身除了正负极的活性物质之外,电解液、隔离膜、粘结剂、导电剂、集流体、基体、壳 体材料等,都是锂离子电池的死重,占整个电池重量的比例在40%左右。如果能够减 轻这些材料的重量,同时不影响电池的性能,那么同样也可以提升锂离子电池的能量密 度。NCM622 IM LMO PVDF CB graphnr Mi PVDF i i electrohie典型动力锂离子电池中材料的辰量比例JOHNSONTM在这方面做文章,就需要针对电解液、隔离膜、

9、粘结剂、基体?口集流体、壳体材料、 制造工艺等方面进行详细的研究和分析,从而找出合理的方案。各个方面都改善一些,就 可以将电池的能量密度整体提升一个幅度。从以上的分析可以看出,提升锂离子电池的能量密度是一个系统工程,要从改善制造 工艺、提升现有材料性能、以及开发新材料和新化学体系这几个方面入手,寻找短期、中 期和长期的解决方案。六、锂离子电池的充放电倍率锂离子电池的充放电倍率,决定了我们可以以多快的速度,将一定的能量存储到电池 里面,或者以多快的速度,将电池里面的能量释放出来。当然,这个存储和释放的过程是 可控的,是安全的,不会显著影响电池的寿命和其他性能指标。倍率指标,在电池作为电动工具,尤

10、其是电动交通工具的能量载体时,显得尤为重 要。设想一下,如果你开着一辆电动车去办事,半路发现快没电了,找个充电站充电,充 了一个小时还没充满,估计要办的事情都耽误了。又或者你的电动汽车在爬一个陡坡,无 论怎么踩油门(电门),车子却慢的像乌龟,使不上劲,自己恨不得下来推车。显然,以上这些场景都是我们不希望看到的,但是却是当前锂离子电池的现状,充电 耗时久,放电也不能太猛,否则电池就会很快衰老,甚至有可能发生安全问题。但是在许 多的应用场合,我们都需要电池具有大倍率的充放电性能,所以我们又一次卡在了 电 池”这儿。为了锂离子电池获得更好的发展,我们有必要搞清楚,都是哪些因素在限制电 池的倍率性能。

11、JOHNSONTM锂离子电池的充放电倍率性能,与锂离子在正负极、电解液、以及他们之间界面处的 迁移能力直接相关,一切影响锂离子迁移速度的因素(这些影响因子也可等效为电池的内 阻),都会影响锂离子电池的充放电倍率性能。此外,电池内部的散热速率,也是影响倍率 性能的一个重要因素,如果散热速率慢,大倍率充放电时所积累的热量无法传递出去,会 严重影响锂离子电池的安全性和寿命。因此,研究和改善锂离子电池的充放电倍率性能, 主要从提高锂离子迁移速度和电池内部的散热速率两个方面着手。1 .提高正、负极的锂离子犷散能力锂离子在正/负极活性物质内部的脱嵌和嵌入的速率,也就是锂离子从正/负极活性物 质里面跑出来的

12、速度,或者从正/负极表面进入活性物质内部找个位置安家的速度到底 有多快,这是影响充放电倍率的一个重要因素。举个例子,全球每年都有会很多的马拉松比赛,虽然大家基本同一时间出发,可是道 路宽度有限,参与的却人很多(有时多达上万人),造成相互拥挤,加上参与人员的身体素 质参差不齐,比赛的队伍最后会变成一个超长的战线。有人很快到达终点,有人晚到几个 小时,有人跑到昏厥,半路就歇菜了。JOHNSONTM锂离子在正/负极的扩散和移动,与马拉松比赛基本差不多,跑得慢的,跑得快的都 有,加上各自选择的道路长短不一,严重制约了比赛结束的时间(所有人都跑完)。所以 呢,我们不希望跑马拉松,最好大家都跑百米,距离足

13、够短,所有人都可以快速达到终 点,另外,跑道要足够的宽,不要相互拥挤,道路也不要曲折蜿蜒,直线是最好的,要降 低比赛难度。如此一来,裁判一声令响,千军万马一起奔向终点,比赛快速结束,倍率性 能优异。在正极材料处,我们希望极片要足够的薄,也就是活性材料的厚度要小,这样等于缩 短了赛跑的距离,所以希望尽可能的提高正极材料压实密度。在活性物质内部,要有足够 的孔间隙,给锂离子留出比赛的通道,同时这些跑道分布要均匀,不要有的地方有, 有的地方没有,这就要优化正极材料的结构,改变粒子之间的距离和结构,做到均匀分 布。以上两点,其实是相互矛盾的,提高压实密度,虽然厚度变薄,但是粒子间隙会变 小,跑道就会显

14、得拥挤,反之,保持一定的粒子间隙,不利于把材料做薄。所以需要寻找 Y平衡点,以达到最佳的锂离子迁移速率。皿环面T电动.Intercalation此外,不同材料的正极物质,对锂离子的扩散系数有显著影响。因此,选择锂离子扩散系数比较高的正极材料,也是改善倍率性能的重要方向。负极材料的处理思路,与正极材料类似,也是主要从材料的结构、尺寸、厚度等方面 着手,减小锂离子在负极材料中的浓度差,改善锂离子在负极材料中的扩散能力。以碳基JOHNSONJOHNSONTM负极材料为例,近年来针对纳米碳材料的研究(纳米管、纳米线、纳米球等),取代传统的 负极层状结构,就可以显著的改善负极材料的比表面积、内部结构和扩

15、散通道,从而大幅 度提升负极材料的倍率性能。2 .提高电解质的离子电导率锂离子在正/负极材料里面玩的是赛跑,在电解质里面的比赛项目却是游泳。游泳比赛,如何降彳氐水(电解液)的阻力,就成为速度提升的关键。近年来,游泳运动 员普遍穿着鲨鱼服,这种泳衣可以极大的降低水在人体表面形成的阻力,从而提高运动员 的比赛成绩,并且成为非常有争议的话题。负极结构电解质正极结构锂离子要在正、负极之间来回穿梭,就如同在电解质和电池壳体所构成的“游泳池”里面游泳,电解质的离子电导率如同水的阻力一样,对锂离子游泳的速度有非常大的影 响。目前锂离子电池所采用的有机电解质,不管是液体电解质,还是固体电解质,其离子 电导率都

16、不是很高。电解质的电阻成为整个电池电阻的重要组成部分,对锂离子电池高倍 率性能的影响不容忽视。除了提高电解质的离子电导率之外,还需要着重关注电解质的化学稳定性和热稳定 性。在大倍率充放电时,电池的电化学窗口变化范围非常宽,如果电解质的化学稳定性不 好,容易在正极材料表面氧化分解,影响电解质的离子电导率。电解液的热稳定性则对锂JOHNSONJOHNSONTM离子电池的安全性和循环寿命有非常大的影响,因为电解质受热分解时会产生很多气体, 一方面对电池安全构成隐患,另一方面有些气体对负极表面的SEI膜产生破坏作用,影响 其循环性能。因此,选择具有较高的锂离子传导能力、良好的化学稳定性和热稳定性、且与

17、电极材 料匹配的电解质是提高锂离子电池倍率性能的一个重要方向。3 .降低电池的内阻这里涉及到几种不同的物质和物质之间的界面,它们所形成的电阻值,但都会对离子/ 电子的传导产生影响。一般在正极活性物质内部会添加导电剂,从而降低活性物质之间、活性物质与正极基 体/集流体的接触电阻,改善正极材料的电导率(离子和电子电导率),提升倍率性能。不同 材料不同形状的导电剂,都会对电池的内阻产生影响,进而影响其倍率性能。正负极的集流体(极耳)是锂离子电池与外界进行电能传递的载体,集流体的电阻值对 电池的倍率性能也有很大的影响。因此,通过改变集流体的材质、尺寸大小、引出方式、 连接工艺等,都可以改善锂离子电池的

18、倍率性能和循环寿命。电解质与正负极材料的浸润程度,会影响电解质与电极界面处的接触电阻,从而影响 电池的倍率性能。电解质的总量、粘度、杂质含量、正负极材料的孔隙等,都会改变电解 质与电极的接触阻抗,是改善倍率性能的重要研究方向。锂离子电池在第一次循环的过程中,随着锂离子嵌入负极,在负极会形成一层固态电 解质(SEI)膜,SEI膜虽然具有良好的离子导电性,但是仍然会对锂离子的扩散有一定的阻 碍作用,尤其是大倍率充放电的时候。随着循环次数的增加,SEI膜会不断脱落、剥离、 沉积在负极表面,导致负极的内阻逐渐增加,成为影响循环倍率性能的因素。因此,控制SEI膜的变化,也能够改善锂离子电池长期循环过程中的倍率性能。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 解决方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com