高考数学应用题归类解析-(2).doc

上传人:豆**** 文档编号:29948664 上传时间:2022-08-02 格式:DOC 页数:61 大小:2.11MB
返回 下载 相关 举报
高考数学应用题归类解析-(2).doc_第1页
第1页 / 共61页
高考数学应用题归类解析-(2).doc_第2页
第2页 / 共61页
点击查看更多>>
资源描述

《高考数学应用题归类解析-(2).doc》由会员分享,可在线阅读,更多相关《高考数学应用题归类解析-(2).doc(61页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date高考数学应用题归类解析-(2)高考数学应用题归类解析 高考数学应用题归类解析张家港市常青藤实验中学 何 睦类型一:函数应用题1.1 以分式函数为载体的函数应用题例1. 工厂生产某种产品,次品率p与日产量x(万件)间的关系为:(c为常数, 且0c6). 已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y(万元)表示为日产量x(万件)的函数;(

2、2)为使日盈利额最大,日产量应为多少万件?(注:次品率100%)【解】(1)若,则, 若,则 , (2)当,则若,则,函数在上为增函数, 若,在上为增函数,在上为减函数,当时,. 综上,若,则当日产量为c万件时,日盈利额最大;若,则当日产量为3万件时,日盈利额最大. 例2. 近年来,某企业每年消耗电费约24万元, 为了节能减排, 决定安装一个可使用15年的太阳能供电设备接入本企业电网, 安装这种供电设备的工本费(单位: 万元)与太阳能电池板的面积(单位: 平方米)成正比, 比例系数约为0.5. 为了保证正常用电, 安装后采用太阳能和电能互补供电的模式. 假设在此模式下, 安装后该企业每年消耗的

3、电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数). 记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和. (1)试解释的实际意义, 并建立关于的函数关系式;(2)当为多少平方米时, 取得最小值?最小值是多少万元?【解】(1)的实际意义是安装这种太阳能电池板的面积为0时的用电费用,即未安装电阳能供电设备时全村每年消耗的电费,由,得,所以;(2)因为.当且仅当,时取等号,所以当为55平方米时, 取得最小值为59.75万元.1.2 以分段函数为载体的函数应用题例3. 在等边中,=6cm,长为1cm的线段两端点都在边上,且由点向点运动(运动前点与

4、点重合),,点在边或边上;,点在边或边上,设. (1)若面积为,由围成的平面图形面积为,分别求出函数的表达式;(2)若四边形为矩形时,求当时, 设,求函数的取值范围 .解:(1) 当时,F在边AC上,;当时,F在边BC上, ,, 当时,F、G都在边AC上,;当时,F在边AC上,G在边BC上, ;当时,F、G都在边BC上, . (2) 当时, 当时,例4. 如图,长方体物体在雨中沿面(面积为)的垂直方向作匀速移动,速度为v(v0),雨速沿移动方向的分速度为,移动时单位时间内的淋雨量包括两部分:(1)或的平行面(只有一个面淋雨)的淋雨量,假设其值与S成正比,比例系数为1;(2)其他面的淋雨量之和,

5、其值为. 记为移动过程中的总淋雨量,当移动距离,面积S=.(1)写出的表达式;(2)设0v10,0c5,试根据的不同取值范围,确定移动速度,使总淋雨量最少.1.3 以二次函数为载体的函数应用题例5. 轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米(1)求助

6、跑道所在的抛物线方程;(2)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值)【解】(1)设助跑道所在的抛物线方程为,依题意: 解得,助跑道所在的抛物线方程为 (2)设飞行轨迹所在抛物线为(),依题意:得解得,令得,当时,有最大值为,则运动员的飞行距离, 飞行过程中距离平台最大高度,依题意,得,即飞行过程中距离平台最大高度的取值范围为在2米到3米之间例6. 某单位有员工1000名,平均每人

7、每年创造利润10万元为了增加企业竞争力,决定优化产业结构,调整出x (x)名员工从事第三产业,调整后他们平均每人每年创造利润为万元(a0),剩下的员工平均每人每年创造的利润可以提高0.2x%(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?【解】(1)由题意,得10(1000x)(10.2x %)101000,即500x0,又x0,所以0x500即最多调整500名员工从事第三产业(2)从事第三产业的员工创造的年总利润为万元,

8、从事原来产业的员工的年总利润为万元,则,所以ax10002xx,所以ax1000x,即a1恒成立因为4,当且仅当,即x500时等号成立,所以a5,又a0,所以0a5所以a的取值范围为(0,类型二:三角测量应用题2.1 以三角函数的定义为载体的三角应用题A OZ OZ CZ BZ 1 2 x y 例7. 如图,两个圆形飞轮通过皮带传动,大飞轮的半径为(为常数),小飞轮的半径为,.在大飞轮的边缘上有两个点,满足,在小飞轮的边缘上有点设大飞轮逆时针旋转一圈,传动开始时,点,在水平直线上m(1)求点到达最高点时,间的距离;(2)求点,在传动过程中高度差的最大值. 【解】(1)以为坐标系的原点,所在直线

9、为轴,如图所示建立直角坐标系当点A到达最高点时,点A绕O1转过,则点C绕O2转过 此时A(0,2r),C (2)由题意,设大飞轮转过的角度为,则小飞轮转过的角度为2,其中此时B(2r,2r),C(4r + r,r)记点高度差为,则即设,则 令,得或1则,0或2 列表:02+0-0+0极大值f()极小值f()0当 =时,f()取得极大值为;当 =时,f()取得极小值为答:点B,C在传动中高度差的最大值 2.2 以三角函数的图象为载体的三角应用题例8. 如图,摩天轮的半径为,点距地面的高度为,摩天轮做匀速转动,每转一圈,摩天轮上的点的起始位置在最低点处.(1)试确定在时刻时点距离地面的高度;(2)

10、在摩天轮转动的一圈内,有多长时间点距离地面超过?(3)求证:不论为何值,是定值.2.3 以解三角形为载体的三角应用题(例9不含分式结构的解三角形问题;例10和例11含有分式结构的解三角形问题,方法略有不同)例9. 在路边安装路灯,灯柱与地面垂直,灯杆与灯柱所在平面与道路垂直,且,路灯采用锥形灯罩,射出的光线如图中阴影部分所示,已知,路宽米,设灯柱高(米),(). (1)求灯柱的高(用表示);(2)若灯杆与灯柱所用材料相同,记此用料长度和为,求关于的函数表达式,并求出的最小值 例10. 如图,将边长为3的正方形ABCD绕中心O顺时针旋转a (0a)得到正方形ABCD根据平面几何知识,有以下两个结

11、论:AFEa;对任意a (0a),EAL,EAF,GBF,GBH,ICH,ICJ,KDJ,KDL均是全等三角形(1)设AEx,将x表示为a的函数;(2)试确定a,使正方形ABCD与正方形ABCD重叠部分面积最小,并求最小面积【解】(1)在RtEAF中,因为AFEa,AEx,所以EF,AF 由题意AEAEx,BFAF,所以ABAEEFBFx3所以x,a(0,) (2)SAEFAEAFx()2 令tsinacosa,则sinacosa 因为a(0,),所以a(,),所以tsin(a)(1, SAEF(1)(1) 正方形ABCD与正方形ABCD重叠部分面积 SS正方形ABCD4SAEF99 (1)1

12、8(1) 当t,即a时等号成立 例11. 如图所示,直立在地面上的两根钢管AB和CD,m,m,现用钢丝绳对这两根钢管进行加固,有两种方法:(1)如图(1)设两根钢管相距1m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F处,形成一个直线型的加固(图中虚线所示)则BE多长时钢丝绳最短?(2)如图(2)设两根钢管相距m,在AB上取一点E,以C为支点将钢丝绳拉直并固定在地面的F 处,再将钢丝绳依次固定在D处、B处和E处,形成一个三角形型的加固(图中虚线所示)则BE 多长时钢丝绳最短?AEDCBFAEDCBF图1图2【解】(1)设钢丝绳长为ym,则(其中,),当时,即时,(2)设钢丝绳长为y

13、m,则(其中,)9分令得,当时,即时12分例12. 海岸线,现用长为的拦网围成一养殖场,其中(1)若, 求养殖场面积最大值;(2)若、为定点,在折线内选点,使,求四边形养殖场DBAC的最大面积;(3)若(2)中B、C可选择,求四边形养殖场ACDB面积的最大值.【解】(1)设,所以,面积的最大值为,当且仅当时取到(2)设为定值) (定值) ,由,a =l,知点在以、为焦点的椭圆上,为定值只需面积最大,需此时点到的距离最大, 即必为椭圆短轴顶点 面积的最大值为,因此,四边形ACDB面积的最大值为(3)先确定点B、C,使. 由(2)知为等腰三角形时,四边形ACDB面积最大.确定BCD的形状,使B、C

14、分别在AM、AN上滑动,且BC保持定值,由(1)知AB=AC时四边形ACDB面积最大. ACDABD,CAD=BAD=,且CD=BD=.来S=.由(1)的同样方法知,AD=AC时,三角形ACD面积最大,最大值为.所以,四边形ACDB面积最大值为.2.4 以立体几何为载体的三角应用题例13. 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且假设该容器的建造费用仅与其表面积有关已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元(1)写出关于的函数表达式,并求该函数的定

15、义域;(2)求该容器的建造费用最小时的【解】(I)设容器的容积为V,由题意知故由于,因此所以建造费用因此(2)由(1)得由于当令,所以 (1)当时,易得是函数y的极小值点,也是最小值点。 (2)当即时,当函数单调递减,所以r=2是函数y的最小值点,综上所述,当时,建造费用最小时当时,建造费用最小时例14. 某部门要设计一种如图所示的灯架,用来安装球心为,半径为R(米)的球形灯泡该灯架由灯托、灯杆、灯脚三个部件组成,其中圆弧形灯托所在圆的圆心都是、半径都是R(米)、圆弧的圆心角都是(弧度);灯杆EF垂直于地面,杆顶E到地面的距离为h(米),且;灯脚FA1,FB1,FC1,FD1是正四棱锥F -

16、A1B1C1D1的四条侧棱,正方形A1B1C1D1的外接圆半径为R(米),四条灯脚与灯杆所在直线的夹角都为(弧度)已知灯杆、灯脚造价都是每米(元),灯托造价是每米(元),其中都为常数设该灯架的总造价为(元)O AB C DE F A1 DC B1 1 1 (1)求关于的函数关系式;(2)当取何值时,取得最小值?【解】(1)延长与地面交于,由题意:,且, 从而, ., (2) 设 ,令 . 当时,;时,设,其中,. ,时,最小. 答:当时,灯架造价取得最小值. 例15. 要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为米.市场上,圆柱侧面用料单

17、价为每平方米元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为(弧度),总费用为(元).(1)写出的取值范围;(2)将表示成的函数关系式;(3)当为何值时,总费用最小?【解】设圆锥的高为米,母线长为米,圆柱的高为米;圆柱的侧面用料单价为每平方米2元,圆锥的侧面用料单价为每平方米4元. (1) (2)圆锥的侧面用料费用为,圆柱的侧面费用为,圆柱的地面费用为, 则 =, =. (3)设,其中则, 当时,当时,当时,则当时,取得最小值,则当时,费用最小. 2.5 以追击问题为载体的三角应用题例16. 如图,是沿太湖南北方向道路,为太湖中观光岛屿, 为停

18、车场,km某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以km/h的速度沿方位角的方向行驶, 游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车)假设游客甲乘小船行驶的方位角是,出租汽车的速度为66km/h(1)设,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;(2)设小船速度为10km/h,请你替该游客设计小船行驶的方位角,当角余弦值的大小是多少时,游客甲能按计划以最短时间到达【解】(1) 如图,作,为垂足,在中,(km), =(km)在

19、中,(km) 设游船从P到Q所用时间为h,游客甲从经到所用时间为h,小船的速度为 km/h,则 (h),(h) 由已知得:,小船的速度为km/h时,游客甲才能和游船同时到达 (2)在中,(km),(km)(km) , 令得:当时,;当时,在上是减函数,当方位角满足时,t最小,即游客甲能按计划以最短时间到达例17. 已知岛南偏东方向,距岛海里的处有一缉私艇,一艘走私船正从处以海里每小时的航速沿正东方向匀速行驶. 假设缉私艇沿直线方向以海里每小时的航速匀速行驶,经过小时截住该走私船. (1)为保证缉私艇在30分钟内(含30分钟)截住该走私船,试确定缉私艇航行速度的最小值;(2)是否存在,使得缉私艇

20、以海里每小时的航行速度行驶,总能有两种不同的航行方向截住该走私船?若存在,试确定的取值范围;若不存在,请说明理由. 【解】(1)最小速度为海里每小时;(2)2.6 以米勒问题为载体的三角应用题 例18. 如图,有一壁画,最高点处离地面,最低点处离地面.若从离地高的处观赏它,则离墙多远时,视角最大?例19. 某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角ABE=,ADE=(1)该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2)该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,

21、可以提高测量精确度若电视塔的实际高度为125m,试问d为多少时,-最大?类型三:数列应用题 例20. 在金融危机中,某钢材公司积压了部分圆钢,经清理知共有2009根.现将它们堆放在一起.(1)若堆放成纵断面为正三角形(每一层的根数比上一层根数多1根),并使剩余的圆钢尽可能地少,则剩余了多少根圆钢?(2)若堆成纵断面为等腰梯形(每一层的根数比上一层根数多1根),且不少于七层,()共有几种不同的方案?()已知每根圆钢的直径为10cm,为考虑安全隐患,堆放高度不得高于4m,则选择哪个方案,最能节省堆放场地?【解】(1)当纵断面为正三角形时,设共堆放层,则从上到下每层圆钢根数是以1为首项、1为公差的等

22、差数列,且剩余的圆钢一定小于根,从而由且得,当时,使剩余的圆钢尽可能地少,此时剩余了56根圆钢;(2)()当纵断面为等腰梯形时,设共堆放层,则从上到下每层圆钢根数是以为首项、1为公差的等差数列,从而,即,因与的奇偶性不同,所以与的奇偶性也不同,且,从而由上述等式得:或或或,共有4种方案可供选择.()因层数越多,最下层堆放得越少,占用面积也越少,所以由(2)可知:若,则,说明最上层有29根圆钢,最下层有69根圆钢,此时如图所示,两腰之长为400 cm,上下底之长为280 cm和680cm,从而梯形之高为 cm,而,所以符合条件;若,则,说明最上层有17根圆钢,最下层有65根圆钢,此时如图所示,两

23、腰之长为480 cm,上下底之长为160 cm和640cm,从而梯形之高为 cm,显然大于4m,不合条件,舍去;综上所述,选择堆放41层这个方案,最能节省堆放场地.高考 例21. 某啤酒厂为适应市场需要,2011年起引进葡萄酒生产线,同时生产啤酒和葡萄酒,2011年啤酒生产量为16000吨,葡萄酒生产量1000吨该厂计划从2012年起每年啤酒的生产量比上一年减少50%,葡萄酒生产量比上一年增加100%,试问:(1)哪一年啤酒与葡萄酒的年生产量之和最低?(2)从2011年起(包括2011年),经过多少年葡萄酒的生产总量不低于该厂啤酒与葡萄酒生产总量之和的?(生产总量是指各年年产量之和)【解】设从

24、2011年起,该车第年啤酒和葡萄酒年生产量分别为吨和吨,经过年后啤酒和葡萄酒各年生产量的总量分别为吨和吨(1)设第年啤酒和葡萄酒生产的年生产量为吨,根据题意,得=,=,(),则=+=,当且仅当,即时取等号, 故年啤酒和葡萄酒生产的年生产量最低,为吨(2)依题意,得,答:从第6年起,葡萄酒各年生产的总量不低于啤酒各年生产总量与葡萄酒各年生产总量之和的 类型四:线性规划应用题例22. 某公司计划2010年在甲、乙两个电视台做广告总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的

25、收益分别为0.3万元和0.2万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?【解】设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得,即,目标函数为,作出二元一次不等式所表示的平面区域,即可行域如图,作直线,即平移直线,从图中可知,当直线过点时,目标函数取得最大值联立方程解得点的坐标为(元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元 类型五:解析几何应用题例23. 某人欲设计一个如图所示的“蝴蝶形图案(阴影区域)”其中是过抛物线焦点且互相垂直的两条弦,该抛物线的对称轴

26、为,通径长为4记,为锐角(通径:经过抛物线焦点且垂直于对称轴的弦)(1)用表示的长;(2)试建立“蝴蝶形图案”的面积关于的函数关系式,并设计的大小,使“蝴蝶形图案”的面积最小【解】(1)由抛物线的定义知,解得,(2)据(1)同理可得,所以“蝴蝶形图案”的面积, 即, 令,则,所以当,即时,的最小值为8 答:当时,可使“蝴蝶形图案”的面积最小 例24. 如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个

27、椭圆形隧 道的土方工程量最小?(半个椭圆的面积公式为)【解】(1)如图建立直角坐标系,则点,椭圆方程为.将b=h=6与点P坐标代入椭圆方程,得此时.因此隧道的拱宽约为33.3米.(2)由椭圆方程,得因为即且所以当取最小值时,有得此时故当拱高约为6.4米、拱宽约为31.1米时,土方工程量最小.例25. 如图所示,有两条道路与,现要铺设三条下水管道,(其中,分别在,上),若下水管道的总长度为,设,(1)求关于的函数表达式,并指出的取值范围;(2)已知点处有一个污水总管的接口,点到的距离为,到点的距离为,问下水管道能否经过污水总管的接口点?若能,求出的值,若不能,请说明理由(2014年高考江苏卷 第

28、18题)170 m60 m东北OABMC如图,为了保护河上古桥,规划建一座新桥BC,同时设立一个圆形保护区.规划要求: 新桥BC与河岸AB垂直; 保护区的边界为圆心M在线段OA上并与BC相切的圆.且古桥两端O和A到该圆上任意一点的距离均不少于80m. 经测量,点A位于点O正北方向60m处, 点C位于点O正东方向170m处(OC为河岸),.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?【解法探究】(1)解法1:(两角差的正切)连结,由题意知,则由两角差的正切公式可得:,故答:新桥的长度为m.解法2:(解析法)由题意可知;由 可知直线的斜率,则直线所在直线的方程为;又由可知,所在

29、的直线方程为;联立方程组,解得;即点,那么. 答:新桥的长度为m.解法3:(初中解法)延长交所在直线于点,由可得,故,在中,由勾股定理得,故答:新桥的长度为m.(2)解法1:(解析法) 由题意设,圆的方程为,且由题意可知. 又古桥两端O和A到该圆上任意一点的距离均不少于80m,那么,解得;由函数为区间上的减函数,故当时,半径取到最大值为.综上可知,当时,圆形保护区的面积最大,且最大值为.解法2:(初中解法)设与圆切于点,连接,过点作交于点.设,则,由古桥两端O和A到该圆上任意一点的距离均不少于80 m,那么,解得. 由,可得,由(1)解法3可得,所以,故即圆的半径的最大值为130,当且仅当时取得半径的最大值. 综上可知,当时,圆形保护区的面积最大. -

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com