金属材料的力学性能及其测试方法.doc

上传人:豆**** 文档编号:28563521 上传时间:2022-07-28 格式:DOC 页数:20 大小:173.50KB
返回 下载 相关 举报
金属材料的力学性能及其测试方法.doc_第1页
第1页 / 共20页
金属材料的力学性能及其测试方法.doc_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《金属材料的力学性能及其测试方法.doc》由会员分享,可在线阅读,更多相关《金属材料的力学性能及其测试方法.doc(20页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、精品文档,仅供学习与交流,如有侵权请联系网站删除目录摘要11引言12金属材料的力学性能简介22.1 强度22.2 塑性22.3 硬度22.4 冲击韧性32.5 疲劳强度33金属材料力学性能测试方法33.1拉伸试验33.2压缩试验63.3扭转试验83.4硬度试验113.5冲击韧度试验163.6疲劳试验194常用的仪器设备简介204.1万能试验机204.2扭转试验机234.3摆锤式冲击试验机285金属材料力学性能测试方法的发展趋势30参考文献30【精品文档】第 19 页金属材料的力学性能及其测试方法摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息

2、息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势Test Methods for The Mechanical Properties of Metal MaterialAbstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under variou

3、s external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties

4、of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses, development trend1引言材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材

5、料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且随着人们对材料的力学性能和使用性能的广泛研究和深入理解,也显著促进了材料力学性能测试技术、理论、方法和设备的迅速发展1。2金属材料的力学性能简介任何机械零件或工具,在使用过程中,往往要受到各种形式外力

6、的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能2。金属的力学性能是指金属材料抵抗各种外加载荷的能力,其中包括:弹性和刚度、强度、塑性、硬度、冲击韧度、断裂韧度及疲劳强度等,它们是衡量材料性能极其重要的指标。2.1 强度强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,符号为,单位为MPa。工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金

7、属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用s表示。抗拉强度是指金属材料在拉力的作用下,被拉断前所能承受的最大应力值,用b表示。对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,而用抗拉强度作为其强度设计的依据。2.2 塑性塑性是指金属材料在外力作用下产生塑性变形而不断裂的能力。工程中常用的塑性指标有伸长率和断面收缩率。伸长率指试样拉断后的伸长量与原来长度之比的百分率,用符号表示。断面收缩率指试样拉断后,断面缩小的面积与原来截面积之比,用y表示。伸长率和断面收缩率越大,其塑性越好;反之,塑性越差。良好的塑性

8、是金属材料进行压力加工的必要条件,也是保证机械零件工作安全,不发生突然脆断的必要条件。2.3 硬度硬度是指材料表面抵抗比它更硬的物体压入的能力。硬度是材料的重要力学性能指标。一般材料的硬度越高,其耐磨性越好。材料的强度越高,塑性变形抗力越大,硬度值也越高。2.4 冲击韧性金属材料抵抗冲击载荷的能力称为冲击韧性,用K表示,单位为J/cm2。冲击韧性常用一次摆锤冲击弯曲试验测定,即把被测材料做成标准冲击试样,用摆锤一次冲断,测出冲断试样所消耗的冲击AK,然后用试样缺口处单位截面积F上所消耗的冲击功K表示冲击韧性。K值越大,则材料的韧性就越好。K值低的材料叫做脆性材料,K值高的材料叫韧性材料。很多零

9、件,如齿轮、连杆等,工作时受到很大的冲击载荷,因此要用K值高的材料制造。铸铁的K值很低,灰口铸铁K值近于零,不能用来制造承受冲击载荷的零件。2.5 疲劳强度工程上一些机件工作时受交变应力或循环应力作用,即使工作应力低于材料的ss ,但经过一定循环周次后仍会发生断裂,这样的断裂现象称之为疲劳。 当零件所受的应力低于某一值时,即使循环周次无穷多也不发生断裂,称此应力值为疲劳强度或疲劳极限。影响疲劳强度的因素:内部缺陷、表面划痕、残留应力等3。3金属材料力学性能测试方法 人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。每种材料的失效形式均与其相关的力学性能有关,如图

10、3-1所示。结合材料的失效形式,人们可以通过设计实验来了解材料各方面的力学性能。以下主要介绍几种常见的金属材料力学性能试验,包括拉伸试验、压缩试验、扭转试验、硬度试验、冲击韧度试验、疲劳试验等。图3-1 力学性能和失效形式的关系3.1拉伸试验金属力学性能试验方法是检测和评定冶金产品质量的重要手段之一,其中拉伸试验则是应用最广泛的力学性能试验方法。拉伸性能指标是金属材料的研制、生产和验收最主要的测试项目之一,拉伸试验过程中的各项强度和塑性性能指标是反映金属材料力学性能的重要参数4。影响拉伸试验结果准确度的因素很多,主要包括试样、试验设备和仪器、拉伸性能测试技术和试验结果处理几大类:为获得准确可靠

11、的,试验室间可比较的试验数据,必须将这些因素加以限定,使其影响减至最小。3.1.1拉伸试样为了便于比较实验结果,按国家标准 GB22876中的有关规定,实验材料要按上述标准做成比例试件,即圆形截面试件 l0 =10d0 (长试件) l0 =5 d0 (短试件)矩形截面试件 l0 =11.3 (长试件) l0 =5.65 (短试件) 式中: l0 -试件的初始计算长度(即试件的标距); A0 -试件的初始截面面积; d0 -试件在标距内的初始直径。实验室里使用的金属拉伸试件通常制成标准圆形截面试件,如图3-2所示图3-2拉伸试件3.1.2拉伸试验原理金属拉伸实验是测定金属材料力学性能的一个最基本

12、的实验,是了解材料力学性能最全面,最方便的实验。本试验主要是测定低碳钢在轴向静载拉伸过程中的力学性能。在试验过程中,利用实验机的自动绘图装置可绘出低碳钢的拉伸图(如图3-3所示)。由于试件在开始受力时,其两端的夹紧部分在试验机的夹头内有一定的滑动,故绘出的拉伸图最初一段是曲线。图3-3 试件拉伸图对于低碳钢,在确定屈服载荷PS时,必须注意观察试件屈服时测力度盘上主动针的转动情况,国际规定主动针停止转动时的恒定载荷或第一次回转的最小载荷值为屈服载荷PS,故材料的屈服极限为 试件拉伸达到最大载荷之前,在标距范围内的变形是均匀的。从最大载荷开始,试件产生颈缩,截面迅速变细,载荷也随之减小。因此,测测

13、力度盘上主动针开始回转,而从动针则停留在最大载荷的刻度上,给我们指示出最大载荷Pb,则材料的强度极限为: 试件断列后,将试件的断口对齐,测量出断裂后的标距l1和断口处的直径d1 ,则材料的延伸率和截面收缩率分别为: 100% 100%式中,l0 , A0分别为试验前的标距和横截面面积; l1 ,A1分别为试验后的标距和断口处的横截面面积。如果断口不在试件距中部的三分之一区段内,则应按国家标准规定采用断口移中法来计算试件拉断后的标距l1 。其具体方法是:试验前先在试件的标距内,用刻线器刻划等间距的标点或圆周11个,即将标距长度分为10等份。试验后将拉断的试件断口对齐,如图33所示,以断口O为起点

14、,在长段上取基本等于短段的格数得B点当长段所余格数为偶数时,如图-4(a)所示,则取所余格数的一半得C点,于是l1AB+2BC若长段所余格数为奇数时,如图-4(b)所示,可在长段上取所余格数减之半得C点,再取所余格数加之半得C1点,于是l1ABBCBC1图3-4 (a);(b)当断口非常接近试件两端部,而与其端部的距离等于或小于直径的两倍时,需重作试验。3.1.3拉伸试验特点拉伸试验操作简单、方便,通过获得的应力应变曲线包含了大量信息,很容易看出材料的各项力学性能,如比例极限、弹性模量、屈服极限、强度极限等等,因此拉伸试验成为了应用最广泛的力学性能试验方法。拉伸实验中材料在达到破坏前的变形是均

15、匀的,能够得到单向的应力应变关系,但其缺点是难以获得大的变形量,缩小了测试范围。3.2压缩试验压缩试验主要用于测定材料的压缩屈服极限以抗拉强度,并通过实验观察材料在压缩过程中的各种现象(主要是变形和破坏形式),以此来比较各种材料的压缩机械性能的特点。以下主要以低碳钢(塑性材料)与铸铁(脆性材料)的压缩试验为例。3.2.1 压缩试验原理将试样放在试验机的两压板之间,开动试验机缓慢进行加载,使试样受到缓慢增加的压力作用,示力指针缓慢匀速转动,并利用试验机的绘图装置自动绘出压缩图(见图35)。由于试样两端不可能理想的平行,试验时必须使用球形承垫(见图36),并且试样应置于球形承垫中心,藉以球形承垫的

16、自动调节作用实现试样的轴向受压。图3-5试验机绘出的压缩图 图3-6 球形承垫3.2.2压缩曲线的解析 1)低碳钢的压缩试样开始变形时服从虎克定律,压缩曲线呈直线(见图35a)。在开始出现变形增长很快的非线性小段时,表示材料到达了屈服,但这时并不象拉伸那样有明显的屈服阶段,只是示力指针暂停转动或稍有返回,这暂停或返回的最小值即为压缩屈服荷载PSC。此后,图形呈曲线上升,材料产生显著的残余变形,试样长度显著缩短,而直径增大。由于试验机压板与试样两端面之间的摩擦力,使试样两端的横向变形受到阻碍,因而试样被压成鼓形。随着荷载的逐渐增加,塑性变形迅速增长,试样的横截面面积也随之增大,而增大的面积又能承

17、受更大的荷载,因此试样愈压愈扁,甚至可以压成薄饼状而不破裂,所以无法测出其最大荷载Pbc和抗压强度bc6。根据测出的压缩屈服荷载PSC,由公式SC=PSC/S0即可求出材料的压缩屈服极限。2)铸铁的压缩图37 铸铁试样压缩下的破坏铸铁试样在压缩时与拉伸明显不同,其压缩曲线上虽然仍没有明显的直线阶段和屈服阶段,但曲线明显变弯(见图35b),表明试样在达到最大荷载Pbc前就出现了明显的塑性变形,而其最大荷载Pbc也要比拉伸时的Pb大很多倍。当荷载达到最大荷载Pbc后稍有下降,然后破裂,并能听到沉闷的破裂声。铸铁试样破裂后呈鼓形,并在与轴线大约成450角的斜面上破裂(见图37),此破坏主要是由剪应力

18、引起的。由公式bc= Pbc/S0即可求出材料的抗压强度。3.2.3压缩试验的特点相比拉伸试验,压缩试验可以很大的变形量,弥补了材料在拉伸力学性能测试中的不足。材料实验表明,对于多数金属材料,拉伸实验在材料破坏前给出的应力应变关系与压缩实验相同,因此压缩试验在金属成形的材料实验中有着广泛的用途。但是压缩实验因为材料端面的摩擦效应,一般难以获得均匀变形,必须有良好的润滑条件来消除摩擦或讲摩擦效应降到极小,才能获得较准确的材料性能7。3.3扭转试验扭转试验是观察试样在扭转力偶作用下试样受力和变形的行为。通过观察材料的破坏方式来测定材料的剪切屈服极限及剪切强度极限。3.3.1扭转试件采用圆形截面试件

19、,如图3-8所示,在试件表面画上一条纵线,以便观察试件的扭转变形。图3-8 扭转试样3.3.2扭转试验机的工作原理扭转试验机如图3-9。在机体上有一个基本固定的夹头,用两平面和夹紧螺栓固定扭转试样的一端。基座上有一个能水平移动的电动减速装置,其左端是一个可旋转的夹头,以夹持试样的另一端。当电动减速器转动时,带动活动夹头转动,而使试样的一端相对于另一端发生了转动,故试件受扭而产生变形。图3-9 扭转试验机作用于试样的扭转力矩,通过与固定夹头相连的称重机构而平衡,同时又带动荷载指针转动而指示出所受扭转力矩的大小。它还带动绘图仪的画笔左右移动,这个移动的扭转力矩坐标在记录纸上与纸的长度方向相垂直。

20、活动夹头的转动量代表了试样一端相对于另一端的转动,即扭转角。扭转角的大小由活动夹头上的刻度线来指示。同时还通过转动传感器将转角信号输入到绘图仪中,带动绘图仪纸筒转动送出记录纸,在记录纸的长度方向构成转角坐标。在实验过程中,随着试件扭转变形的增加,试样所受的扭转力矩也随之变化,绘图仪就画出扭转力矩扭转角的实验曲线。在扭转力矩示荷盘的右下方,有一个量程旋钮用以改变扭转力矩的测量量程。其测量范围有100Nm、200 Nm、500 Nm、1 000 Nm。当把旋钮转动到指定的量程时,示荷盘上的刻度标示值随之变化。以利于直接读取。在示荷盘左边的侧面上有一个转动轮,往上或往下转动可调整示荷盘指针的零点(一

21、般情况下不要去转动它)。扭转实验时的变形速度,可由改变电动机的转速来决定。由于本机采用可控硅直流电机,调速可在一个很大的范围内无级调整。调速由机器操纵面板的开关和旋钮来控制。控制面板如图3-10,面板各开关,旋钮的功能如下所述。电源开关:按下“开”,接通整机电源;按“关”,断开整机电源:活动夹头转动速度设置如下。快速设置:速度设置开关扳于0360/min,表示活动夹头转动速度在0360/min的范围内变化,具体的速度由速度调节钮的转动来决定。慢速设置:速度设置开关搬于036/min之间变化。具体的速度由速度调节钮的转动量来决定。电机开关按钮:电机的转动由三个按钮决定,“正”为正转,“反”为反转

22、,“停”为不转。改变电机转向时,应先按“停”然后再换回。记录仪开关:此开关用于开关记录仪,当一切准备就绪后即可打开记录仪。用完关闭,以免电机转动空走纸。图3-10 控制台面板3.3.3扭转实验原理试件承受扭矩时,材料处于纯剪切应力状态,是拉伸以外的又一重要应力状态,常用扭转实验来研究不同材料在纯剪切应力状态下的机械性质。低碳钢试件在发生扭转变形时,其T曲线如图3-11所示,类似低碳钢拉伸实验,可分为四个阶段:弹性阶段、屈服阶段、强化阶段和断裂阶段,相应地有三个强度特征值:剪切比例极限、剪切屈服极限和剪切强度极限。对应这三个强度特征值的扭矩依次为Tp、Ts、Tb。图3-11 T曲线在比例极限内,

23、T与成线性关系,材料完全处于弹性状态,试件横截面上的剪应力沿半径线性分布。如图3-12(a)所示,随着T的增大,开始进入屈服阶段,横截面边缘处的剪应力首先到达剪切屈服极限,而且塑性区逐渐向圆心扩展,形成环塑性区,如图3-12(b)所示,但中心部分仍然是弹性的,所以T仍可增加,T的关系成为曲线,直到整个截面几乎都是塑性区5,如图3-12(c)所示。 (a) (b) (c)图3-12 试件横截面剪切力分布在T出现屈服平台,示力度盘的指针基本不动或有轻微回摆,由此可读出屈服扭矩Ts,低碳钢扭转的剪切屈服极限值可由下式求出:屈服阶段过后,进入强化阶段,材料的强化使扭矩又有缓慢的上升,但变形非常明显,试

24、件的纵向画线变成螺旋线,直至扭矩到达极限扭矩值Mb进入断裂阶段,试件被剪断,由示力度盘的从动针可读出,则低碳钢扭转的剪切强度极限 可同下式求出:3.3.4试件的破坏现象分析:试件受扭,材料处于纯剪切应力状态,在试件的横截面上作用有剪应力,同时在与轴线成45的斜截面上,会出现与剪应力等值的主拉应力和主压应力6,如图4-13所示。图3-13 试样受力分析 低碳钢的抗剪能力比抗拉和抗压能力差,试件将会从最外层开始,沿横截面发生剪断破坏,而铸铁的抗拉能力比抗剪和抗压能力差,则试件将会在与杆轴成45的螺旋面上发生拉断破坏。3.4硬度试验金属硬度试验按受力方式可分为压入法 、刻划法两种,一般来说普遍采用压

25、入法;按加力速度可分为静力试验法和动力试验法两种,其中静力试验法最为普遍,常用的布、洛、维氏硬度等均属静力压入试验法8。3.4.1布氏硬度试验法3.4.1.1 布氏硬度试验法法原理将一定直径的硬质合金球施加试验力压入试样表面经规定的保持时间后,卸除试验力,测量试样表面压痕的直径,见图3-14。图3-14 布氏硬度测量原理图由压头球直径D和测量所得的试样压痕直径d可算出压痕面积,即:: S = (2-1)于是布氏硬度值可由以下式算出: 布氏硬度=常数试验力/压痕表面积,即: (2-2)上式中: ;D, d 单位为mm;F 单位为N。试验时,根据被测的材料不同,球直径、试验力及试验力保持时间按表1

26、选择。表1 球直径、试验力和试验力保持时间选择表3.4.1.2布氏硬度的特点布氏硬度试验的优点是其硬度代表性好,由于通常采用的是10mm球压头,3000kg试验力,其压痕面积较大,能反映较大范围内金属各组成相综合影响的平均值,而不受个别组成相及微小不均匀度的影响,因此特别适用于测定灰铸铁、轴承合金和具有粗大晶粒的金属材料。它的试验数据稳定,重现性好,精度高于洛氏,低于维氏。此外布氏硬度值与抗拉强度值之间存在较好的对应关系。布氏硬度试验的缺点是压痕较大,成品检验有困难,试验过程比洛氏硬度试验复杂,要分别完成测量操作和压痕测量,因此要求操作者具有一定的经验。3.4.1.3布氏硬度的应用布氏硬度计主

27、要用于组织不均匀的锻钢和铸铁的硬度测试,锻钢和灰铸铁的布氏硬度与拉伸试验有着较好的对应关系。布氏硬度试验还可用于有色金属、钢材和经过调质热处理的半成品工件,采用小直径球压头可以测量小尺寸和较薄材料。布氏硬度计多用于原材料和半成品的检测,由于压痕较大,一般不用于成品检测。布氏硬度试验法一般用于试验各种硬度不高的钢材、铸铁、有色金属等,也用于试验经淬火、回火但硬度不高的钢件。由于布氏硬度试验的压痕较大,试验结果能更好地代表试件的硬度9。3.4.2 洛氏硬度实验3.4.2.1洛氏硬度试验法原理采用顶角为 120金刚石圆锥压头或者直径为1.588mm的淬火钢球压头。测试时先加预载荷Fo,压头从起始位置

28、0-0到1-1位置,压入试件深度为h1,后加总载荷F(为主载荷加上预载荷),压头位置为2-2,压入深度为h2,停留数秒后,将主载荷卸除,保留预载荷。由于被测试件弹性变形恢复,压头略为提高,位置为 3-3,实际压入试件深度为h3,因此在主载荷作用下,压头压入试件的深度h= h3一 h1 。如图3-15所示图3-15 洛氏硬度测定原理示意图试验时,根据被测的材料不同,压头的类型、试验力及按表2选择,对应的洛氏硬度标尺为HRA、HRB、HRC三种。表2 压头、试验力选择表3.4.2.2洛氏硬度的特点洛氏硬度的优点:操作较为简便;压痕小,对工件损伤小,归于无损检测一类,可对成品直接进行测量;测量范围广

29、,较为常用的就有A、B、C三种标尺,可以测量各种软硬不同,厚薄不同的材料。洛氏硬度试验的缺点为测量结果有局限性,对每一个工件测量点数一般不少于3个点10。3.4.2.3洛氏硬度的应用洛氏硬度测量范围:可用于成品和薄件,但不宜测量组织粗大不均匀的材料3.4.3维氏硬度试验3.4.3.1维氏硬度试验法原理维氏硬度试验是用一个相对面夹角为136的正四棱锥体金钢石以规定的试验力F压入试样表面, 经保持规定时间后, 卸除试验力, 测出压痕表面积, 维氏硬度值是试验力F与压痕表面积S之比,即HV=F/ S, 其试验原理如图3-16所示。 图3-16 维氏硬度试验原理示意图 即HV = 常数试验力/压痕表面

30、积 0.1891 Fd2 式中:HV-维氏硬度符号; F-试验力,N; d-压痕两对角线d1、d2的算术平均值,mm实用中是根据对角线长度d通过查表得到维氏硬度值。国家标准规定维氏硬度压痕对角线长度范围为0.0201.400mm11。3.4.3.2维氏硬度的表示方法维氏硬度表示为HV,维氏硬度符号HV前面的数值为硬度值,后面为试验力值。标准的试验保持时间为1015S。如果选用的时间超出这一范围,在力值后面还要注上保持时间。例如:600HV30表示采用294.2N(30kg)的试验力,保持时间1015S时得到的硬度值为600。600HV30/20表示采用294.2N(30kg)的试验力,保持时间

31、20S时得到的硬度值为600。3.4.3.3维氏硬度试验的分类和试验力选择维氏硬度试验按试验力大小的不同,细分为三种试验,即:维氏硬度试验、小负荷维氏硬度试验和显微维氏硬度试验。见表3试验力范围/N 硬度符号 试验名称 F49.03HV5维氏硬度试验 1.961F49.03HV0.2HV5小负荷维氏硬度试验 0.09807F1.961HV0.01HV0.2显微维氏硬度试验 表3维氏硬度试验的三种方法维氏硬度试验可选用的试验力值很多,见表4。维氏硬度试验 小负荷维氏试验试验 显微维氏硬度试验 硬度符号 试验力/N硬度符号 试验力/N硬度符号 试验力/NHV549.03HV0.21.961HV0.

32、010.09807HV1098.07HV0.32.942HV0.0150.1471HV20196.1HV0.54.903HV0.020.1961HV30294.2HV19.807HV0.0250.2452HV50490.3HV219.61HV0.050.4903HV100980.7HV329.42HV0.10.9807注:1.维氏硬度试验可使用大于980.7N的试验力;2.显微维氏试验力为推荐值。 表4推荐的维氏硬度试验力试验力的选择要根据试样种类、试样厚度和预期的硬度范围而定。标准规定,试样或试验层的厚度至少为压痕对角线长度的1.5倍。试验后试样背面不应出现可见的变形痕迹。3.4.3.4维氏

33、硬度的特点维氏硬度试验的优点:1)维氏硬度试验的压痕是正方形,轻廓清晰,对角线测量准确,因此,维氏硬度试验是常用硬度试验方法中精度最高的,同时它的重复性也很好,这一点比布氏硬度计优越。2)维氏硬度试验测量范围宽广,可以测量目前工业上所用到的几乎全部金属材料,从很软的材料(几个维氏硬度单位)到很硬的材料(3000个维氏硬度单位)都可测量。3)维氏硬度试验最大的优点在于其硬度值与试验力的大小无关,只要是硬度均匀的材料,可以任意选择试验力,其硬度值不变。这就相当于在一个很宽广的硬度范围内具有一个统一的标尺。这一点又比洛氏硬度试验来得优越。4)在中、低硬度值范围内,在同一均匀材料上,维氏硬度试验和布氏

34、硬度试验结果会得到近似的硬度值。例如,当硬度值为400以下时,HVHB。5)维氏硬度试验的试验力可以小到10gF,压痕非常小,特别适合测试薄小材料。维氏硬度试验的缺点:维氏硬度试验效率低,要求较高的试验技术,对于试样表面的光洁度要求较高,通常需要制作专门的试样,操作麻烦费时,通常只在实验室中使用。3.4.3.5维氏硬度的应用维氏硬度试验主要用于材料研究和科学试验方面小负荷维氏硬度试验主要用于测试小型精密零件的硬度,表面硬化层硬度和有效硬化层深度,镀层的表面硬度,薄片材料和细线材的硬度,刀刃附近的硬度,牙科材料的硬度等,由于试验力很小,压痕也很小,试样外观和使用性能都可以不受影响。显微维氏硬氏试

35、验主要用于金属学和金相学研究。用于测定金属组织中各组成相的硬度,用于研究难熔化合物脆性等。显微维氏硬度试验还用于极小或极薄零件的测试,零件厚度可薄至3m11。3.5冲击韧度试验在实际工程机械中,有许多构件常受到冲击载荷的作用,机器设计中应力求避免冲击波负荷,但由于结构或运行的特点,冲击负荷难以完全避免,为了了解材料在冲击载荷下的性能,我们必须作冲击实验。冲击实验的意义在于测量材料在冲击载荷作用下的冲击吸收功以及测定材料的的冲击韧度值K 。3.5.1冲击试件工程上常用金属材料的冲击试件一般在带缺口槽的矩形试件,做成制品的目的是为了便于揭露各因素对材料在高速变形时的冲击抗力的影响。缺口形状和试件尺

36、寸对材料的冲击韧度值k的影响极大,要保证实验结果能进行比较,试件必须严格按照冶金工业部的部颁布标准制作12。故测定K值的冲击实验实质上是一种比较性实验,其冲击试件形状如图3-17所示。图3-17 冲击试件3.5.2冲击实验原理 材料冲击实验是一种动态力学实验,它是将具有一定形状和尺寸的U 型或V型缺口的试样,在冲击载荷作用下折断,以测定其冲击吸收功AK和冲击韧性值K的一种实验方法。 冲击实验通常在摆锤式冲击试验机上进行,其原理如图 3-18所示。实验时将试样放在试验机支座上,缺口位于冲击相背方向,并使缺口位于支座中间(图3-18b)。然后将具有一定重量的摆锤举至一定的高度H1,使其获得一定位能

37、mgH1。释放摆锤冲断试样,摆锤的剩余能量为mgH2,则摆锤冲断试样失去的势能为mgH1 mgH2。如忽略空气阻力等各种能量损失,则冲断试样所消耗的能量(即试样的冲击吸收功)为: AK = mg(H1-H2)AK的具体数值可直接从冲击试验机的表盘上读出,其单位力J 。将冲击吸收功AK除以试样缺口底部的横截面积SN(cm2),即可得到试样的冲击韧性值K:K= AK/SN对于Charpy U 型缺口和V型缺口试样的冲击吸收功分别用AKU和AKV表示,它们的冲击韧性值分别用KU和KV表示。 K作为材料的冲击抗力指标,不仅与材料的性质有关,试样的形状、尺寸、缺口形式等都会对K值产生很大的影响,因此K只

38、是材料抗冲击断裂的一个参考性指标。只能在规定条件下进行相对比较,而不能代换到具体零件上进行定量计算13。(a) 冲击试验机的结构图(b) 冲击试验与支座的安放图图3-18 冲击试验的原理图3.5.3试样温度及温度测量 对于室温冲击试验,试验在室温1035 下进行.如要求严格,在控制室温202下进行(国际标准规定235) 对于高温冲击试验,试样加热至规定的试验温度, 温度偏差允许2。由于试样从高温炉移出,在室温环境和与支座接触,温度会降低,按本方法结合打击时间,需附加过热度(也应考虑过热对材料性能的影响) 对于低温冲击试验,试样冷却至规定温度,允许温度偏2。由于试样从低温移出至室温环境和与支座接

39、触,温度会升高, 按本方法结合打击时间,需附加过冷度。 试样加热或冷却所选用的热源,冷源和介质应安全,无毒,不腐蚀试样。3.5.4影响冲击韧性或冲击吸收功大小的因素长期生产实践证明AK、K值对材料的组织缺陷十分敏感,能灵敏地反映材料品质、宏观缺陷和显微组织方面的微小变化,因而冲击试验是生产上用来检验冶炼和热加工质量的有效办法之一。由于温度对一些材料的韧脆程度影响较大,为了确定出材料由塑性状态向脆性状态转化趋势,可分别在一系列不同温度下进行冲击试验,测定出AK值随试验温度的变化。实验表明,AK随温度的降低而减小;在某一温度范围,材料的AK值急剧下降,表明材料由韧性状态向脆性状态转变,此时的温度称

40、为韧脆转变温度。根据不同的钢材及使用条件,其韧脆转变温度的确定有冲击吸收功、脆性断面率、侧膨胀值等不同的评定方法。3.5.5冲击试验断口评定方法对于金属夏比冲击断口形貌的测定,目前的国家标准GB/T12778-1991金属夏比冲击断口测定方法规定了三种方法:(a)比较法,(b)直接测量法,(c)放大测量法。结合标准规定的方法, 通常采用的韧性断面率(纤维断面率)评定方法有4 种方法:1)比较法:采用将断口与如国际标准或美国 ASTM E23 标准给定的标准实物断口形貌图比较确定.2)测量法:测量断口晶状断裂部分面积的长度和宽度(作近似矩形面积)或上、下底高(作近似梯形面积),计算其面积。 3)

41、放大测量法: A. 把试样断口拍片放大,利用求积仪测量。 B. 利用低倍显微镜等光学仪器(图象分析技术)测量。 4)用带标尺的方孔卡片法、网格卡片法。 夏比冲击断口形貌的评定,其准确度并不很高.按照英国标准BS131-5:1965结晶度的测定提示,前述的“比较法”法,对于有经验的操作人员能达到约10%的准确度,而其他几种方法准确性相对高些,但比较法简单方便。图3-19所示管线钢L555MB的冲击试样在-20的条件下打断的试样断口。图3-19 冲击试样断口在做冲击试验的过程中,试验设备、试样及试验过程都会影响试样数据的稳定性。每当我们做一组冲击试验的时候发现试验数据分散比较严重,就应该考虑是哪些

42、方面出现了问题影响了数据的稳定性。3.6疲劳试验疲劳实验的基本目的是确定材料的疲劳极限(或说持久极限),通常采用的是旋转弯曲疲劳实验。疲劳极限按其定义是材料在交变应力作用下,能经受无限次循环而不破坏的最大应力的极限值。实际上,实验不可能使试件进行无限次循环,因此规定一个循环数作为“实验基数”。对于黑色金属 N=(510)106,对于有色金属N=(50100)106,所以,实际的疲劳极限指的是能经受N次循环而不发生疲劳破坏的最大应力值。疲劳失效与静载荷下的失效不同,断裂前没有明显的塑性变化,发生断裂也较突然。这种断裂具有很大的危险性,常常造成严重的事故。据统计,大部分机械零件的失效是由金属疲劳造

43、成的14。因此,工程上十分重视对疲劳规律的研究。无裂纹材料的疲劳性能判据主要是疲劳极限和疲劳缺口敏感度等。3.6.1实验原理取一组同样的试件(812根),如图3-20所示。每根试件选择不同的应力进行实验。第一根试件的最大应力一般为0.60.7b(b为静荷强度极限),记下试件发生破坏的循环数N,以后各根试件的应力依次减少2040N/mm2,直到最后一根试件在规定的循环次数尚不破坏时为止。最后的两根试件(破坏的和未破坏的)的应力差,应不大于10N/mm2。所得实验结果可绘成以和N为坐标的疲劳曲线,该曲线渐近线纵坐标即定为材料的疲劳极限。r(这里r=-1)如图3-21 所示。图3-20 疲劳试件图3

44、-21 疲劳曲线3.6.2影响金属材料疲劳强度大小的因素由于疲劳断裂通常是从机件最薄弱的部位或外部缺陷所造成的应力集中处发生,因此疲劳断裂对许多因素很敏感,例如,循环应力特性、环境介质、温度、机件表面状态、内部组织缺陷等,这些因素导致疲劳裂纹的产生或速裂纹扩展而降低疲劳寿命。 为了提高机件的疲劳抗力,防止疲劳断裂事故的发生,在进行机械零件设计和加工时,应选择合理的结构形状,防止表面损伤,避免应力集中。由于金属表面是疲劳裂纹易于产生的地方,而实际零件大部分都承受交变弯曲或交变扭转载荷,表面处应力最大。因此,表面强化处理就成为提高疲劳极限的有效途径。由于工程实际的要求,对疲劳的研究工作已逐渐从正常

45、条件下的疲劳问题扩展到特殊条件下的疲劳问题,如腐蚀疲劳、接触疲劳、高温疲劳、热疲劳、微动磨损疲劳等。对这些疲劳及其测试技术还在广泛进行研究,并已逐步标准化15。4常用的仪器设备简介4.1万能试验机4.1.1万能试验机的工作原理万能材料试验是现代电子技术与机械传动技术相结合的产物,是充分发挥了机电各自特长而构成的大型精密测试仪器,可对各种材料进行拉伸、压缩、弯曲、剥离、剪切等多项性能试验,且有测量范围宽、精度高、响应快等特点。工作可靠,效率高,可对试验数据进行实时显示记录、打印。如图1所示。图4-1 万能试验机万能材料试验机是由测量系统、驱动系统、控制系统及电脑(电脑系统型拉力试验机)等结构组成

46、。 1)万能材料试验机的测量系统a.力值的测量通过测力传感器、放大器和数据处理系统来实现测量,最常用的测力传感器是应变片式传感器。所谓应变片式传感器,就是由【应变片】、弹性元件和某些附件(补偿元件、防护罩、接线插座、加载件组成),能将某种机械量变成电量输出的器件。应变片式的拉、压力传感器国内外种类繁多,主要有筒状力传感器、轮辐式力传感器、S双连孔型传感器、十字梁式传感器等类型。从材料力学上得知,在小变形条件下,一个弹性元件某一点的应变与弹性元件所受的力成正比,也与弹性的变形成正比。以S型传感器为例,当传感器受到拉力P的作用时,由于弹性元件表面粘贴有应变片,因为弹性元件的应变与外力P的大小成正比例,故此将应变片接入测量电路中,即可通过测出其输出电压,从而测出力的大小。对于传感器,一般采用差动全桥测量,即将所粘贴的应变片组成桥路,R1、R2、R3、R4,实际为阻值相等的4片(或8片)应变片,即R1=R2=R3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com