2022年风量风压计算 .pdf

上传人:Q****o 文档编号:28407498 上传时间:2022-07-27 格式:PDF 页数:16 大小:465.23KB
返回 下载 相关 举报
2022年风量风压计算 .pdf_第1页
第1页 / 共16页
2022年风量风压计算 .pdf_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022年风量风压计算 .pdf》由会员分享,可在线阅读,更多相关《2022年风量风压计算 .pdf(16页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、1 1、机熔除硫管路计算:风量的计算:根据设备使用方提供的图纸得知管路的总管水平管尺寸为 600,取总管风速为: 16m/s 风速取值见下表:除尘风管的最低风速m/s 表 F002粉尘类别粉尘名称垂直水平粉尘类别粉尘名称垂直水平纤维粉尘干锯木、小刨屑纺织尘10 12 矿物粉尘重矿物粉尘14 16 木屑、刨花12 14 轻矿物粉尘12 14 干燥粗刨花、大块干木屑14 15 灰土、沙土16 18 潮湿粗刨花、大块干木屑18 20 干细型沙17 20 棉絮8 10 金刚沙、钢玉粉15 19 麻11 13 金属粉尘钢铁粉尘13 15 钢铁屑19 23 石棉粉尘12 18 铅尘20 25 矿物粉尘耐火

2、粉尘材料14 17 其它粉尘轻质干燥尘末木加工粉8 10 黏土13 16 煤尘11 13 石灰石14 16 焦炭粉尘14 18 水泥12 18 谷物粉尘10 12 所以风量为:Q=16278m3/h( 根据 D=4 Q/3600 脱硫除尘系统的阻力确定:支管的阻力:(支管为垂直管,风速取14m/s,风量为6000m3/h 左右 )支管 1 的局部压力损失系数:吸风罩1=0.15 弯头2=0.28 风阀3=0.17 渐扩管4=0.56 =1.16 所以支管1 的压力损失为:P1=( Rm L2/2) =5.89781.16 118 =185Pa 支管 2 和 3 是对称布置,所以压损基本和1 相

3、同。主管的压损:主管的局部压力损失系数:渐扩管4=0.56 弯头3= 风帽4=1 =1.84所以主管的压力损失为:Pz=(Rm L2/2) =4.405261.84 15 =399Pa 脱硫除尘系统的总压损:P=P1 P2 P3 Pz PC(废气处理装置压损为8001000Pa)=1954Pa 根据风量和压损选定风机的型号:4-72No6C 转速: 2240r/min 流量 19124 m3/h ,全压 2004PaN=15kw 电机型号: Y160L-4 2、铸造厂清理抽风管路计算:风量的计算:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1

4、页,共 16 页2 根据设备使用方提供的图纸得知车间尺寸为775010m ,取车间换气次数为:20 次/h换气次数取值见下表:每小时各种场所换气次数场所种类次数场所种类次数医院诊疗室6 工厂一般作业室6 手术室15 涂装室20 消毒室12 变电室20 学校礼堂6 放映室15 教室46卫生间10 实验室有害气体尘埃发出地20 以上所以处理风量为:Q=NV=770000m3/h ,由于采用两台风机对称处理,所以单台风机处理量为 385000m3/h 铸造厂清理系统的阻力确定:支管的阻力:(支管为垂直管,风速取16m/s,风量为77000m3/h 左右 (5 个支管 ),支管尺寸 1200)支管 1

5、 的局部压力损失系数:弯头1= 弯头2=0.28 风阀3=0.17 渐扩管4=0.56 =1.29 所以支管1 的压力损失为:P1=( Rm L2/2) =2.012181.29 1 =235Pa 支管 2、3 和 4、5 是对称布置,所以压损基本和1 相同。主管的压损:主管的局部压力损失系数:渐扩管4=0.56 弯头3= 风帽4=1 =1.84所以主管的压力损失为:Pz=(Rm L2/2) =4.405451.84 195.048 =556Pa 铸造厂清理系统的总压损:P=P1 P2 P3 Pz P4+P5=1731Pa 根据风量和压损选定风机的型号:T4-72No2-20E 转速: 660

6、r/min 流量408000 m3/h ,全压 1844PaN=315kw 电机型号: Y450-508(JSQ-148-8) 通风除尘管网的设计计算第六章第六章 :通风除尘管网设计计算通风管道计算有两个基本的任务: 一是确定管道的阻力, 以确定通风除尘系统所需的风机性能; 二是确定管道的尺寸(直径 ),管道设计的合理与否直接影响系统的投资费用和运行费用. 第六章 :通风除尘管网设计计算一. 管道压力计算(一) 管道的阻力计算管道的阻力包括摩擦阻力和局部阻力. 摩擦阻力由空气的粘性力及空气与管壁之间的摩擦作用产生 , 它发生在整个管道的沿程上, 因此也称为沿程阻力. 第六章 :通风除尘管网设计

7、计算精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 16 页3 管道的阻力计算局部阻力则是空气通过管道的转弯, 断面变化 , 连接部件等处时, 由于涡流 ,冲击作用产生的能量损失 . 1. 摩擦阻力管道的摩擦阻力采用下式计算: Pm= (L/De) U2/2式中 Pm - 摩擦阻力 , Pa; -摩擦阻力系数, 其值与流态有关; L- 管道长度 , m; 第六章 :通风除尘管网设计计算管道的阻力计算1. 摩擦阻力管道的摩擦阻力采用下式计算: Pm= (L/De) U2/2式中 Pm - 摩擦阻力 , Pa; -摩擦阻力系数, 其值与流态

8、有关; L- 管道长度 , m; -空气密度 , Kg/m3; U- 管内平均流速, m/s; De-风管的当量直径, m. 第六章 :通风除尘管网设计计算当量直径 : De= 4 f/P 式中 f- 管道的断面积, m2; P-管道的周长 , m. 对于圆管 , 当量直径即为管道的直径. 对于矩形管 , 通常采用两种当量直径,即流速当量直径和流量当量直径. 流速当量直径是假设当量管道的流速与矩形管的流速相等, 并且单位长度的摩擦阻力也相等. 由此推得流速当量直径为: De=2ab/(a+b) a,b 为矩形管断面的长, 宽边尺寸 . 第六章 :通风除尘管网设计计算流量当量直径是假设等效圆管的

9、流量与矩形管的流量相等, 并且单位长度的摩擦阻力也相等. 由此推得流量当量直径为:实际计算中多采用流速当量直径. 在实际设计计算中, 一般将上述摩擦阻力计算式作一定的变换, 使其变为更直观的表达式. 目前有如下两种变换方式: 第六章 :通风除尘管网设计计算(1) 比摩阻法 : 令 Rm=( /De) U2/2称 Rm 为比摩阻 , Pa/m, 其意义是单位长度管道的摩擦阻力. 这样摩擦阻力计算式则变换成以下表达式 : Pm=Rm L为了便于工程设计计算, 人们对 Rm 确实定已作出了线解图, 设计时只需根据管内风量,管径和管壁粗糙度由线解图上即可查出Rm 值, 这样就很容易由上式算出摩擦阻力.

10、 第六章 :通风除尘管网设计计算(2) 综合摩擦阻力系数法: 管内风速U=L/f, L为管内风量 , f 为管道断面积. 将 U 代入摩擦阻力计算式 Pm= (L/De) U2/2后, 令精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 16 页4 Km= (L/De) /2f2则摩擦阻力计算式变换为以下表达式: Pm=Km L2称 Km 为综合摩擦阻力系数, N S2/m8. 采用Pm=KmL2 计算式更便于管道系统的分析及风机的选择, 因此在管网系统运行分析与调节计算时 , 多采用该计算式. 第六章 :通风 除尘管网设计计算管道摩擦阻

11、力受多种因素的影响, 在设计计算时应考虑这些因素. 主要影响因素有: 管壁的粗糙度和空气温度. 粗糙度越大 , 摩擦阻力系数值越大 , 摩擦阻力越大. 温度影响空气密度和粘度 , 因而影响比摩阻Rm. 温度上升 , 比摩阻 Rm 下降 . 线解图上查得的Rm 是 20时的数值 , 实际计算应根据具体温度进行修正. 第六章 :通风除尘管网设计计算2. 局部阻力局部阻力计算式为: Z= U2/2 Pa其中 为局部阻力系数, 根据不同的构件查表获得. 在通风除尘管网中 , 连接部件很多, 因此局部阻力较大, 为了减少系统运行的能耗, 在设计管网系统时 , 应尽可能降低管网的局部阻力. 降低管网的局部

12、阻力可采取以下措施: (1) 防止风管断面的突然变化; 第六章 :通风除尘管网设计计算2. 局部阻力(2) 减少风管的转弯数量, 尽可能增大转弯半径; (3) 三通汇流要防止出现引射现象, 尽可能做到各分支管内流速相等. 分支管道 中心线夹角要尽可能小 , 一般要求不大于30 ; (4) 降低排风口的出口流速, 减少出口的动压损失; (5) 通风系统各部件及设备之间的连接要合理, 风管布置要合理. 第六章 :通风除尘管网设计计算(二) 管内压力分布分析管内压力分布的目的是了解管内压力的分布规律, 为管网系统的设计和运行管理提供依据 . 分析的原理是风流的能量方程和静压,动压与全压的关系式. 在

13、通风风流基本理论一章中已作分析.主要结论 : (1) 风机的风压等于风管的阻力和出口动压损失之和; (2) 风机吸入段的全压和静压都是负值, 风机入口处的负压最大; 风机压出段的全压和静压都是正值 , 在出口处正压最大; (3) 各分支管道的压力自动平衡. 第六章 :通风除尘管网设计计算(一) 管道直径的计算在计算管道直径时, 应满足以下约束条件: (1) 管内流速的要求: 对于除尘管道, 为了防止粉尘沉积管壁上, 管内流速要大于一定的数值, 即 UUmin, Umin 为防止粉尘沉积的最小风速. 对非除尘管网可不受这个条件的约束. (2) 阻力平衡要求: 要使各分支的风量满足设计要求, 各分

14、支的阻力必须平衡. 如果设计的阻力不平衡就应进行调节. 第六章 :通风除尘管网设计计算(一) 管道直径的计算精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 16 页5 (3) 管道投资费用和运行费用的合理性: 管道直径增大, 阻力减少 , 运行费用降低, 但阻力增大 , 运行费用也增大. 因此 , 管径的合理性应表现在管道投资费用与运行费用总和最小. 设计时 , 要使确定的管径完全满足上述约束条件是很困难的, 因此人们提出了各种计算方法, 常用的有以下几种方法: 第六章 :通风除尘管网设计计算1. 假定流速法其原理是取管内流速等于最小风

15、速或经济风速, 根据管内的流量Li 即可得管径Di 为: Di= 4Li/( Vmin)采用假定流速法求出的各分支阻力一般不平衡需进行阻力平衡调节. 假定流速法的计算步骤如下 : (1) 绘制通风系统轴侧图, 对各管段先进编号, 标注各管段的长度和风量. (2) 选择管内合理的空气流速. 第六章 :通风除尘管网设计计算第六章 :通风除尘管网设计计算(3) 根据各管段的风量和选定的流速确定各管段的管径, 并计算各管段的摩擦阻力和局部阻力. (4) 对并联管路进行阻力平衡调节. (5) 计算系统的总阻力, 并根据总阻力和总风量选择风机. 2. 等压损法该法的原理是 , 假设风机的风压H 为已知 ,

16、 各管段单位长度的压力损失相等, 由此而求出各分支的管径 . 这种方法计算结果也很难满足阻力平衡要求, 因此也需要进行阻力平衡调节. 第六章 :通风除尘管网设计计算3. 静压复得法 :该法原理是在管道的分支处, 由于分流使流速降低, 根据静压与动压的转换原理 , 流速降低 , 使风管分支处复得一定的静压, 令此复得静压等于该管段的阻力.由此即可求得管道的直径. 此法主要用于高风速管网的计算. 4. 优化设计法 :该法的原理是以管道投资费用与运行费用总和最低作为目标函数而获得管道直径 . 这种方法是管网设计计算中的新理论, 它对于降低通风系统的能耗, 提高管网风平衡精度具有重要的意义. 第六章

17、:通风除尘管网设计计算均匀送风管道的计算要求送风管道从风管侧壁上的假设干风口(或短管 ), 以相同的出口速度, 均匀地把等量的空气送入室内 , 这种送风管道称为均匀送风管道. 均匀送风管道的构造有两种形式, 一种是均匀送风管道的断面变化(即断面逐渐缩小)而侧风口 (或短管 )的面积相等 ; 另一种是送风管道的断面不变化而侧风口(或短管 )的面积都不相等. 其计算的基本原理是保持各侧孔的静压相等. 根据管道阻力的计算和能量方程即可求得各侧孔静压相等的关系式. 第六章 :通风除尘管网设计计算均匀送风管道计算的目的是确定侧孔的面积, 风管断面尺寸以及均匀送风管段的阻力. 当侧孔的数量 , 侧孔的间距

18、以及每个侧孔的送风量确定之后, 按上述原理即可计算出均匀送风管道的尺寸 . 三. 管道设计中的有关问题管道的阻力计算和尺寸计算只是管道设计的部分内容, 在设计中还有许多因素需要考虑. 如风管的布置问题, 风管类型与材料确实定问题, 管件定型化问题. 风管的防火防爆措施, 风管的防腐 , 泄水及保温措施等, 在设计中都应充分考虑. 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 16 页6 图 6-1-1 直管与弯管一摩擦阻力1圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:6-1-1 对于

19、圆形风管,摩擦阻力计算公式可改为:6-1-2 圆形风管单位长度的摩擦阻力又称比摩阻为:6-1-3 以上各式中摩擦阻力系数;v风秘内空气的平均流速,m/s;空气的密度,kg/m3;l 风管长度,m ;Rs风管的水力半径,m ;f 管道中充满流体部分的横断面积,m2;P湿周,在通风、空调系统中即为风管的周长,m ;D 圆形风管直径,m 。摩擦阻力系数 与空气在风管内的流动状态和风管管壁的粗糙度有关。在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。通常,高速风管的流动状态也处于过渡区。只有流速很高、外表粗糙的砖、混凝土精选学习资料 - - - - - - - -

20、 - 名师归纳总结 - - - - - - -第 6 页,共 16 页7 风管流动状态才属于粗糙区。计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:6-1-4 式中 K风管内壁粗糙度,mm ;D风管直径, mm 。进行通风管道的设计时,为了防止烦琐的计算,可根据公式6-1-3 和 6-1-4 制成各种形式的计算表或线解图,供计算管道阻力时使用。只要已知流量、 管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。线解图是按过渡区的 值,在压力B0=101.3kPa、温度 t0=20、宽气密度03、运动粘度v0=15.06106m2/s 、

21、管壁粗糙度 K=0.15mm 、圆形风管等条件下得出的。当实际使用条件下上述条件不相符时,应进行修正。1密度和粘度的修正6-1-5 式中 Rm实际的单位长度摩擦阻力,Pa/m;Rmo图上查出的单位长度摩擦阻力,Pa/m;实际的空气密度,kg/m3;v实际的空气运动粘度,m2/s 。2空气温度和大气压力的修正6-1-6 式中 Kt温度修正系数。KB大气压力修正系数。6-1-7 式中 t 实际的空气温度,。6-1-8 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 16 页8 式中 B实际的大气压力,kPa。3管壁粗糙度的修正在通风空调工程

22、中,常采用不同材料制作风管,各种材料的粗糙度K见表 6-1-1 。当风管管壁的粗糙度K0.15mm时,可按下式修正。Rm=KrRmo Pa/m 6-1-9 Kr=Kv6-1-10 式中 Kr管壁粗糙度修正系数;K管壁粗糙度,mm ;v管内空气流速,m/s。表 6-1-1 各种材料的粗糙度K风管材料粗糙度 mm 薄钢板或镀锌薄钢板塑料板矿渣石膏板矿渣混凝土板胶合板砖砌体36 混凝土13 木板2矩形风管的摩擦阻力计算上述计算是按圆形风管得出的,要进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。再由此求得矩形风管的单位长度摩擦阻力。所谓“当量直径”,就是与矩形风管

23、有相同单位长度摩擦阻力的圆形风管直径,它有流速当量直径和流量当量直径两种。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 16 页9 1流速当量直径假设某一圆形风管中的空气流速与矩形风管中的空气流速相等,并且两者的单位长度摩擦阻力也相等,则该圆风管的直径就称为此矩形风管的流速当量直径,以Dv表示。根据这一定义,从公式6-1-1 可以看出,圆形风管和矩形风管的水力半径必须相等。圆形风管的水力半径矩形风管的水力半径令则6-1-11 Dv称为边长为ab的矩形风管的流速当量直径。2流量当量直径设某一圆形风管中的空气流量与矩形风管的空气流量相等,

24、并且单位长度摩擦阻力也相等,则该圆形风管的直径就称为此矩形风管的流量当量直径,以 DL表示。根据推导,流量当量直径可近似按下式计算。6-1-12 必须指出,利用当量直径求矩形风管的阻力,要注意其对应关系:采用流速当量直径时,必须用矩形风管中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。用两种方法求得的矩形风管单位长度摩擦阻力是相等的。3摩擦阻力的转换计算式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 16 页10 在实际设计计算中, 一般将上述摩擦阻力计算式作一定的变换, 使其变为更直观的表达式 .

25、目前有如下两种变换方式: (1) 比摩阻法令称 Rm为比摩阻, Pa/m,其意义是单位长度管道的摩擦阻力。这样摩擦阻力计算式则变换成以下表达式:6-1-13 为了便于工程设计计算, 人们对 Rm 确实定已作出了线解图, 设计时只需根据管内风量、管径和管壁粗糙度由线解图上即可查出Rm值, 这样就很容易由上式算出摩擦阻力。(2) 综合摩擦阻力系数法管内风速,L 为管内风量, f 为管道断面积。将代入摩擦阻力计算式:后, 令则摩擦阻力计算式变换为以下表达式:6-1-14 称 Km为综合摩擦阻力系数 , N S2/m8。采用计算式更便于管道系统的分析及风机的选择,因此,在管网系统运行分析与调节计算时,

26、多采用该计算式。二局部阻力的计算当空气流过断面变化的管件如各种变径管、风管进出口、阀门、流向变化的管件弯头和流量变化的管件如三通、四通、风管的侧面送、排风口都会产生局部阻力。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 16 页11 局部阻力按下式计算6-1-15 式中局部阻力系数。局部阻力系数一般用实验方法确定。实验时先测出管件前后的全压差即局部阻力Z,再除以与速度v 相应的动压,求得局部阻力系数值。有的还整理成经验公式。计算局部阻力时,必须注意值所对应的气流速度。由于通风、空调系统中空气的流动都处于自模区,局部阻力系数只取决于管

27、件的形状,一般不考虑相对粗糙度和雷诺数的影响。局部阻力在通风、空调系统中占有较大比例,在设计时应加以注意,为了减小局部阻力,通常采取以下措施:(1) 防止风管断面的突然变化。(2) 减少风管的转弯数量, 尽可能增大转弯半径。图 6-1-2 管道弯头精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 16 页12 如图 6-1-2 。布置管道时,应尽量以直线,减少弯头。圆形风管弯头的曲率半径一般大于 12倍管径;矩形风管弯头断面的长度比B/A愈大,阻力愈小。在民用建筑中,常采用矩形直角弯头,应在其中设导流片。3三通汇流要防止出现引射现象,

28、尽可能做到各分支管内流速相等. 分支管道中心线夹角要尽可能小, 一般要求不大于30。如图 6-1-3 。三通内流速不同的两股气流汇合时的碰撞,以及气流速度改变时形成涡流是造成局部阻力的原因。两股气流在汇合过程中的能量损失一般是不相同的,它们的局部阻力应分别计算。合流三通内直管的气流速度大于支管的气流速度时,会发生直管气流引射支管气流的作用,即流速大的直管气流失去能量,流速小的支管气流得到能量,因而支管的局部阻力有时出现负值。同理,直管的局部阻力有时也会出现负值。但是,不可能同时为负值。必须指出,引射过程会有能量损失,为了减小三通的局部阻力,应防止出现引射现象。为减小三通的局部阻力,还应注意支管

29、和干管的连接,减小其夹角。同时还应尽量使支管和干管内的流速保持相等。二、管道直径设计计算步骤以假定流速法为例,其计算步骤和方法如下:1绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。管段长度一般按两管件间中心线长度计算,不扣除管件 ( 如三通,弯头) 本身的长度。2确定合理的空气流速风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高, 风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小, 动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过

30、低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2-1 、表 6-2-2 及表 6-2-3 确定。除尘器后风管内的流速可比表6-2-3 中的数值适当减小。表 6-2-1 一般通风系统中常用空气流速m/s类别风管材料干管支管室内进风室内回风新鲜空气精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 16 页13 口口入口工业建筑机械通讯薄钢板、混凝土砖等614 412 28 26 56 工业辅助及民用建筑自然通风机械通风58 25 24 表 6-2-2 空调系统低速风管内的空气

31、流速部位频率为 1000Hz时室内允许声压级dB40 4060 60 新风入口总管和总干管无送、回风口的支管有送、回风口的支管表 6-2-3 除尘风管的最小风速m/s粉尘类别粉尘名称垂直风管水平风管纤维粉尘干锯末、小刨屑、纺织尘10 12 木屑、刨花12 14 干燥粗刨花、大块干木屑14 16 潮湿粗刨花、大块湿木屑18 20 棉絮8 10 麻11 13 石棉粉尘12 18 矿物粉尘耐火材料粉尘14 17 粘土13 16 石灰石14 16 水泥12 18 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 16 页14 湿土含水2% 以下

32、15 18 重矿物粉尘14 16 轻矿物粉尘12 14 灰土、砂尘16 18 干细型砂17 20 金刚砂、刚玉粉15 19 金属粉尘钢铁粉尘13 15 钢铁屑19 23 铅尘20 25 其它粉尘轻质干粉尘木工磨床粉尘、烟草灰8 10 煤尘11 13 焦炭粉尘14 18 谷物粉尘10 12 3根据各风管的风量和选择的流速,按式6-2-1 计算各管段的断面尺寸,并计算摩擦阻力和局部阻力。确定风管断面尺寸时,应采用标准统一规定的通风管道规格,以利于工业化加工制作。风管断面尺寸确定后,应按管内实际流速计算阻力。阻力计算应从最不利环路即阻力最大的环路开始。袋式除尘器和静电除尘器后风管内的风量应把漏风量和

33、反吹风量计入。在正常运行条件下,除尘器的漏风率应不大于5。4并联管路的阻力平衡调节为了保证各送、排风点到达预期的风量,两并联支管的阻力必须保持平衡。对一般的通风系统,两支管的阻力差应不超过15,除尘系统应不超过10。假设超过上述规定,可采用下述方法调节其阻力平衡。(1) 调整支管管径这种方法是通过改变支管管径改变支管的阻力,到达阻力平衡。调整后的管径按下式计算:(6-2-2) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 16 页15 式中D 调整后的管径,mm ; D 原设计的管径,mm ;P原设计的支管阻力,Pa;P要求到达的支

34、管阻力,Pa。应当指出,采用本方法时,不宜改变三通的支管直径,可在三通支管上先增设一节渐扩缩管,以免引起三通局部阻力的变化。2增大风量当两支管的阻力相差不大时,例如在20% 以内,可不改变支管管径,将阻力小的那段支管的流量适当加大,到达阻力平衡。增大后的风量按下式计算:6-2-3 式中L调整后的支管风量,m3/h ; L 原设计的支管风量,m3/h 。采用本方法会引起后面干管内的流量相应增大,阻力也随之增大;同时风机的风量和风压也会相应增大。3阀门调节通过改变阀门开度,调节管道阻力,从理论上讲是一种最简单易行的方法。必须指出,对一个多支管的通风空调系统进行实际调试,是一项复杂的技术工作。必须进

35、行反复的调整、测试才能完成,到达预期的流量分配。5计算系统的总阻力。、风机的选择计算1根据输送气体性质、系统的风量和阻力确定风机的类型。例如输送清洁空气,选用一般的风机;输送有爆炸危险的气体或粉尘,选用防爆风机。2考虑到风管、设备的漏风及阻力计算的不精确,应按下式的风量、风压选择风机:PfKpP Pa 7-3-1 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 16 页16 Lf=KLL m3/h 7-3-2 式中 Pf风机的风压,Pa; Lf风机的风量,m3/h ; Kp风压附加系数,一般的送排风系统Kp=1.1 1.15 ;除尘系

36、统Kp=1.15 1.20 ; KL风量附加系数,一般的送排风系统KL=1.1 ;除尘系统KL=1.1 1.15 ;P系统的总阻力,Pa; L 系统的总风量,m3/h. 3当风机在非标准状态下工作时,应按以下公式对风机性能进行换算,再以此参数从样本上选择风机。7-3-3 7-3-4 式中 Lf标准状态下风机风量,m3/h ;非标准状态下风机风量,m3/h ; Pf标准状态下风机的风压,Pa;非标准状态下风机风压,Pa;非标准状态下空气的密度,kg/m3。空气状态变化时,实际所需的电动机功率会有所变化,应进行验算,检查样本上配用的电动机功率是否满足要求。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 16 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com