AD转换器解析.ppt

上传人:豆**** 文档编号:23934294 上传时间:2022-07-02 格式:PPT 页数:53 大小:671.50KB
返回 下载 相关 举报
AD转换器解析.ppt_第1页
第1页 / 共53页
AD转换器解析.ppt_第2页
第2页 / 共53页
点击查看更多>>
资源描述

《AD转换器解析.ppt》由会员分享,可在线阅读,更多相关《AD转换器解析.ppt(53页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、 量化:即化模拟量为数字量的过程,取样保持后的样点值仍是连续的模拟信号,为了用数字量表示,必须将其化成某个最小数量单位的整数倍。有只舍不入式量化和有舍有入式量化2种。 编码:转换之后的数字可以用10进制表示,也可以用2进制数表示,或用BCD码表示等。一般多用2进制码。 计算机、数字通讯等数字系统是处理数字信号的电路系统。然而,在实际应用中,遇到的大都是连续变化的模拟量,因此,需要一种接口电路将模拟信号转换为数字信号。A/D转换器正是基于这种要求应运而生的。 1970年代初,由于MOS工艺的精度还不够高,模拟部分采用双极工艺,数字部分采用MOS工艺,两部分不能做在同一个芯片上。因此,A/D转换器

2、只能采用多芯片方式实现,成本很高。 1975年,一个采用NMOS工艺的10位逐次逼近型A/D转换器成为最早出现的单片A/D转换器。 1976年,出现了分辨率为11位的单片CMOS积分型A/D转换器。此时的单片集成A/D转换器中,数字部分占主体,模拟部分只起次要作用;此时的MOS工艺相对于双极工艺还存在许多不足。 1980年代,出现了采用BiCMOS工艺制作的单片集成A/D转换器,但是工艺复杂,成本高。 随着CMOS工艺的不断发展,采用CMOS工艺制作单片A/D转换器已成为主流。这种A/D转换器的成本低、功耗小。 1990年代,便携式电子产品的普遍应用要求A/D转换器的功耗尽可能地低。当时的A/

3、D转换器功耗为mW级,而现在已经可以降到W级。A/D转换器的转换精度和速度也在不断提高 目前,A/D转换器的转换速度已达到数百MSPS,分辨率已经达到24位。 常用的ADC类型 积分型逐次逼近型并行比较型/串并行型 -调制型电容阵列逐次比较型压频变换型积分型ADC工作原理:是将输入电压转换成时间或频率,然后由定时器/计数器获得数字值。优点:是用简单电路就能获得高分辨率缺点:是由于转换精度依赖于积分时间,因此转换速率极低。 双积分型ADC 双积分型ADC:是1种VT型A/D转换器, 由积分器、比较器、计数器和部分控制电路组成。 最大优点:是工作稳定,抗干扰能力强。 最大缺点:是速度较慢,所以主要

4、用于数字电压表等低速测试系统中。 转换精度主要取决于位数、运算放大器和比较器的灵敏度和零点漂移等因素,高精度的价格较贵。 初期的单片ADC大多采用积分型,现在逐次比较型已逐步成为主流。逐次逼近型(如TLC0831) 一个比较器和DA转换器通过逐次比较逻辑构成,从最高有效位开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。 其电路规模属于中等。 优点是结构简单、速度较高、功耗低,在低分辨率( 12位)时价格很高。 并行比较型/串并行比较型(如TLC5510) 并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash型。由于转换速率极高, n位的转换需

5、要2n - 1个比较器,因此电路规模也极大,价格也高,只适用于视频AD 转换器等速度特别高的领域。 串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2个n /2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Halfflash型。-调制型(如AD7701) - 型ADC以很低的采样分辨率( 1位)和很高的采样速率将模拟信号数字化,通过使用过采样、噪声整形和数字滤波等方法增加有效分辨率,然后对ADC输出进行采样抽取处理以降低有效采样速率。-型ADC的电路结构是由非常简单的模拟电路和十分复杂的数字信号处理电路构成。 电容阵列逐次比较型 电容阵列逐次比较型AD在内置

6、DA转换器中采用电容矩阵方式,也可称为电荷再分配型。 一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。 如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。 压频变换型(如AD650) 压频变换型是通过间接转换方式实现模数转换的。 原理:首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。 从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。 优点:分辨率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。主要技术指标ADC分

7、辨率:指输出数字量变化一个最低有效位(LSB)所需的输入模拟电压的变化量。 ADC的精度:决定于量化误差及系统内其他误差之总和。一般精度指标为满量程的0. 02% ,高精度指标为满量程的0. 001%。 转换速率:是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。 积分型AD的转换时间是毫秒级属低速AD,逐次比 较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。 量化误差:由于AD 的有限分辨率而引起的误差,即有限分辨率AD的阶梯状转移特性曲线与无限分辨率AD (理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1 /2L

8、SB。 此外还要注意其它一些特性,如输入通道数(即A/D转换路数)、输出方式,其中包括输出编码方式(如2进制码、BCD码、7段显示译码)、输出逻辑电平(CMOS、LSTTL)与微机接口能力等。 自电子管ADC面世以来,经历了分立半导体、集成电路数据转换器的发展历程。 ADC的生产已进入全集成化阶段,同时在转换速度和转换精度等主要指标上有了重大突破,还开发了一些具有与计算机直接接口功能的芯片。在集成技术中,又发展了模块、混合和单片机集成数据转换器技术。 ADC主要的应用领域不断拓宽,广泛应用于多媒体、通讯、自动化、仪器仪表等领域。对不同的领域的不同要求,例如接口、电源、通道、内部配置的要求,每一

9、类ADC都有相应的优化设计方法;同时,用户不仅要考虑到ADC本身的工艺和电路结构,而且还应考虑到ADC的外围电路,如相应的信号调理电路等模拟电路的设计。 随着通信事业、多媒体技术和数字化设备的飞速发展,信号处理越来越趋向数字化,促进了高速DAC有了长足进步,牵动着DAC制造商研制出许多新结构、新工艺及各种特殊用途的高速DAC。 高速DAC的应用领域主要有三个方面:数字化仪器,包括波形重建和任意波形发生器;直接数合成(DDS) ,包括接收器本机振荡器、跳频无线电设备、通信系统、正交调制(QAM)系统和雷达系统;图形显示系统,包括失量扫描和光栅扫描。 数据转换器技术是模拟信号和数字信号之间的重要桥

10、梁,低电压、大电流、高效率、小尺寸、低成本是ADC /DAC转换器发展的趋势。 ADC /DAC转换器的效率和密度也在不断增加。 通信与网络设备的集成化趋势需要ADC /DAC转换器集成更多的功能,同时具有更宽的输出电压或多路输出。近年来转换器产品已达到数千种,ADC和DAC的市场呈稳步增长的发展趋势,它们在现代军用和民用电子系统中均显示出其重要性。 目前生产AD/DA的主要厂家有ADI、TI、BB、PHILIP、MOTOROLA等,武汉力源公司拥有多年从事电子产品的经验和雄厚的技术力量支持,已取得排名世界前列的模拟IC生产厂家ADI、TI公司代理权,经营全系列适用各种领域场合的AD/DA器件

11、。 常见的A/D转换器的有效位数有4、6、8、10、12、14、16位以及BCD码输出的位、位和位等多种;转换速度有低速(1s)、中速(1ms)、高速(1s)和超高速(1ns)等;就芯片组成而言,有些芯片不但包括ADC基本电路,还包括多路转换开关、时钟电路、基准电压源或210转换器等,功能更加齐全。常见ADC芯片A/D转换器的比较与分类表1对各种A/D转换器的分辨率、转换速度和功耗等性能进行了比较。根据A/D转换器的速度和精度,大致可分为三类。 1)高速低(或中等)精度A/D转换器,具体的结构有全并行、两步型、插值折叠型和流水线型。此类A/D转换器速度快,但是精度不高,而且消耗的功耗大,占用的

12、芯片面积也很大,主要用于视频处理、通信、高速数字测量仪器和雷达等领域。 2)中速中等精度A/D转换器。这一类型的A/D转换器是以速度来换取精度,如逐次逼近型A/D转换器。数据输出通常是串行的,它们的转换速度在几十kHz到几百kHz之间,精度也比高速A/D转换器高(1016位),主要用于传感器、自动控制、音频处理等领域。 3)中速或低速高精度A/D转换器。此类A/D转换器速度不快,但精度很高(1624位),如-A/D转换器。该类型A/D转换器主要用于音频、通信、地球物理测量、测试仪、自动控制等领域。 为了满足数字系统的发展要求,A/D转换器的性能也必须不断提高,它将主要向以下几个方向发展: 高转

13、换速度:现代数字系统的数据处理速度越来越快,要求获取数据的速度也要不断提高。比如,在软件无线电系统中,A/D转换器的位置是非常关键的,它要求A/D转换器的最大输入信号频率在1GHz和5GHz之间,以目前的技术水平,还很难实现。因此,向超高速A/D转换器方向发展的趋势是清晰可见的。 高精度:现代数字系统的分辨率在不断提高,比如,高级仪表的最小可测值在不断地减小,因此,A/D转换器的分辨率也必须随之提高;在专业音频处理系统中,为了能获得更加逼真的声音效果,需要高精度的A/D转换器。目前,最高精度可达24位的A/D转换器也不能满足要求。现在,人们正致力于研制更高精度的A/D转换器。 低功耗:片上系统

14、(SOC)已经成为集成电路发展的趋势,在同一块芯片上既有模拟电路又有数字电路。为了完成复杂的系统功能,大系统中每个子模块的功耗应尽可能地低,因此,低功耗A/D转换器是必不可少的。在以往的设计中,5MSPS812位分辨率A/D转换器的典型功耗为100150mW。这远不能满足片上系统的发展要求 各种技术和工艺的相互渗透,扬长避短,开发出适合各种应用场合,能满足不同需求的A/D转换器,将是模拟/数字转换技术的未来发展趋势;高速、高精度、低功耗A/D转换器将是今后数据转换器发展的重点。全并行模拟/数字转换 它的工作原理非常简单,模拟输入信号同时与2N-1个参考电压进行比较,只需一次转换就可以同时产生n

15、位数字输出。它是迄今为止速度最快的A/D转换器,最高采样速率可以达到500MSPS。 不足:硬件开销大,其功耗和面积与分辨率呈指数关系;结构重复的并行比较器之间必须要精密匹配,任何失配都会造成静态误差;容易产生离散和不确定的输出,即所谓的“闪烁码”。所以,全并行A/D转换器只适用于分辨率较低的情况。 减小全并行A/D转换器的输入电容和电阻网络的级数是提高其性能的关键。 为了达到这一目的,采用了各种新技术,如将全并行结构与插值技术相结合,可降低功耗和面积,从而可使全并行A/D转换器进行更高精度的模拟/数字转换。 Lane C.设计了一个10位60MSPS转换速率的全并行A/D转换器,通过运用插值

16、技术,将比较器的数目从1023个减小到512个,大大节省了功耗和面积。 两步型模拟/数字转换 由一个粗分全并行A/D转换器对输入进行高位转换,产生N1位的高位数字输出,并将此输出通过数字/模拟转换,恢复为模拟量;然后,将原输入电压与此模拟量相减,对剩余量进行放大,再送到一个更精细的全并行模拟/数字转换器进行转换,产生N2位的低位数字输出;最后,将这两个A/D转换器的输出并联,作为总的数字输出。 与全并行A/D转换器相比,此种类型的A/D转换器虽然转换速度降低了,但是节省了功耗和面积,解决了全并行A/D转换器中分辨率提高与元件数目剧增的矛盾。因此,两步型A/D转换器可用于10位以上的模拟/数字转

17、换,但是,它对剩余量放大器的要求很高,剩余量必须被放大到充满第二个A/D转换器的输入模拟量范围,否则,会产生非线性和失码。 第一级A/D转换器和D/A转换器的建立时间及精度是限制两步型A/D转换器工作速度的一个重要因素,如果建立时间不充分,势必导致转换结果出现误差,所以,大多数两步型A/D转换器都采用了数字校正技术来改善这一问题。 Razavi,B.和Wooley,B.A.采用校正技术研制的两步型A/D转换器,其第一级比较器的建立时间只需10ns,失调电压可达到5mV,转换速度高达5MSPS,分辨率为12位。 折叠结构 通过一个特殊的模拟预处理产生余差电压,并随后进行数字化,获得最低有效位(L

18、SB),最高有效位(MSB)则通过与折叠电路并行工作的粗分全并行A/D转换器得到,几乎在对信号采样的同时,对余差进行采样。 图中折叠电路的传输函数是理想情况,实际电路很难实现。所以,一般的折叠结构都具有非线性,但其过零点处的非线性为0。若只考虑这些过零点,则Vin与Vrj之差的极性可以被正确确定,再采用插值的办法产生额外的过零点来解决低位。这就是插值折叠的基本思想,它既利用了折叠特性,又不带来额外的非线性。 使插值折叠型A/D转换器的性能提高的两种新技术:电流式插值系统和级联结构。 用电阻实现的电压式插值器,其精度受到电阻匹配度的限制,而在电流式插值器中,信号是由电流幅度表示的,其精度更高,而

19、且更适合在低电源电压下工作。 Li,Y-C等人通过在细量化通路上采用电流模式信号处理技术来降低电压摆幅,获得具有300MSPS转换速度、60MHz输入信号带宽、7位分辨率的A/D转换器。 采用级联结构。在无需增加并行输入级和细分A/D转换器中比较器数目的条件下,级联结构可将转换精度提高到8位以上。 Vorenkamp,P.等人设计的12位插值折叠型A/D转换器采用三步式级联结构,其中,3位粗分量化,3位中分量化,6位细分量化。该A/D转换器只需50个比较器,转换速度为60MSPS。流水线型模拟/数字转换 流水线型A/D转换器是对两步型A/D转换器的进一步扩展。它将一个高分辨率的n位模数转换分成

20、多级的低分辨率的转换,然后将各级的转换结果组合起来,构成总的输出。每一级电路由采样/保持电路(S/H)、低分辨率A/D转换器、D/A转换器、减法器和可提供增益的级间放大器组成。 这种类型的A/D转换器具有以下优点:每一级的冗余位优化了重叠误差的纠正,具有良好的线性和低失调;每一级都具有各自独立的采样保持放大器,因此允许流水线各级同时对多个采样进行处理,从而提高了转换速度;分辨率相同的情况下,电路规模及功耗大大降低。但它也存在一些缺点:复杂的基准电路和偏置结构;输入信号必须穿过数级电路,造成流水延迟;同步所有输出需要严格的锁存定时;对工艺缺陷和印刷线路板较敏感,这会影响增益非线性、失调及其它参数

21、。 目前,普遍采用两种新技术来提高流水线A/D转换器的性能。 一种是时间交织技术,使多条流水线并行工作。通过采用这种技术,可大大提高转换速率,但并行的通道数不能太多,否则,会大大增加芯片面积和功耗,而且各个通路之间需要高度匹配,在工艺上很难实现。 Sumanen,L.等人设计了一个具有4个并行通道的流水线A/D转换器,采用0.5mCMOS工艺实现。该A/D转换器的采样率高达200MSPS,分辨率为10位。 另一种新技术就是数字校准技术,其主要思想是将校准周期内测量到的误差存放在存储器中,然后在正常运算周期内,通过原始码寻址,得到校对码,再通过原始码和校对码的运算,得到最终的数字输出。这种技术可

22、对模拟电路的失调不匹配以及非线性引入的误差等进行有效的校正,从而使流水线A/D转换器的精度超过10位。 Hakarainen,V.等人研制的交织型流水线A/D转换器,运用这种校正技术来校正子D/A转换器的误差,并对各并行通道之间增益和失调电压的失配进行补偿,从而在10位的器件匹配精度下获得了14位的转换精度。 逐次逼近型模拟/数字转换 输入信号的抽样值与D/A转换器的初始输出值相减,余差被比较器量化,量化值再来指导控制逻辑是增加还是减少D/A转换器的输出;这个新的输出值再次从输入抽样值中被减去,不断重复这个过程,直至其精度达到要求为止。在一个时钟周期里只完成1位转换,N位转换就需要N个时钟周期

23、,故它的采样率不高,输入带宽也较低;但电路结构简单,面积和功耗小,而且不存在延迟问题。 逐次逼近型A/D转换器的一个关键部分就是D/A转换器,它制约着整个A/D转换器的精度和速度。D/A转换器传统的制作方法是用精密电阻网络实现,但是它的精度不高。 以电容阵列为基础,采用电荷重分布技术的D/A转换器可以获得更高的精度,这主要是由于在MOS电路中比较容易制造出小容量的精密电容,而且电容损耗极小。 Gan,J-H等人采用非二进制的电容阵列结构实现D/A转换器,并采用自校准技术提高电容的匹配度,使D/A转换器的精度高达22位,制作出功耗为50mW的16位1.5MSPS高性能逐次逼近型A/D转换器。 -

24、模拟/数字转换 由-调制器和数字滤波器组成。调制器包括一个积分器和比较器,以及含有一个1位D/A转换器的反馈环,具有噪声整形功能,将量化噪声从基带内搬移到基带外的更高频段,从而提高了信噪比。 在进行-调制时,以远高于Nyquist采样率的频率对模拟信号进行采样,可减少基带范围内的噪声功率,使转换精度进一步提高。经调制器输出的是1位的高速2数字流,包含大量高频噪声,因此需要数字滤波器,滤除高频噪声,降低抽样频率。 -A/D转换器是目前精度最高的A/D转换器。此外,它还具有极其优越的线性度、无需微调,以及更低的防混淆等优点。 过采样技术要求采样频率远高于输入信号频率,从而限制了输入信号带宽;而且,

25、随着过采样率的提高,功耗会大大增加。因此,在保证一定精度的前提下,尽可能地降低过采样率变得十分关键。 目前普遍采用的方法主要有两种:多级噪声整形技术(MASH),该技术采用多个级联的、稳定的一阶或二阶回路;另一种是多位结构的- A/D转换器,该结构含有一个n位并行A/D转换器和一个n位D/A转换器。为了获得更好的效果,通常将这两种方法结合使用。 2001年,delRio,R.等人为ADSL应用设计的4阶-调制器采用2-1-1三级结构,其中最后一级含有4位量化器。该A/D转换器的过采样率仅为16,分辨率12位,采样率为4MSPS,功耗77mW。 还有几种新技术被应用到- A/D转换器中,以提高其

26、性能。带通- A/D转换器采用带通滤波器替代积分器,量化噪声被向上和向下移出有用频带,再由带通数字滤波器将有用频带外的其他信号和量化噪声滤除,从而直接对中频信号进行高精度转换。 Schreier,R.等人采用0.35m BiCMOS工艺制作的带通- A/D转换器,其带宽为333kHz,动态范围90dB,功耗为50mW,时钟频率高达32MHz。 采用异质结工艺制作的连续时间- A/D转换器,其带宽比开关电容型- A/D转换器大得多,从而使- A/D转换器可用于射频领域。一个采用InPHBT工艺实现的二阶-调制器,其分辨率为12位,信号带宽为50MHz,采样率为3.2GHz。将多个- A/D转换器并联起来,对输入进行模拟预处理,对输出进行数字后处理,可获得与提高过采样比一样的效果,实现奈氏采样率的- A/D转换器(过采样比为1),从而进一步提高输入信号带宽。奈氏采样率- A/D转换器,其并行通道数为8,输入信号带宽为160kHz。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com