机械设备故障诊断技术-滚动轴承故障诊断.ppt

上传人:不*** 文档编号:2116971 上传时间:2019-12-06 格式:PPT 页数:78 大小:6.81MB
返回 下载 相关 举报
机械设备故障诊断技术-滚动轴承故障诊断.ppt_第1页
第1页 / 共78页
亲,该文档总共78页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《机械设备故障诊断技术-滚动轴承故障诊断.ppt》由会员分享,可在线阅读,更多相关《机械设备故障诊断技术-滚动轴承故障诊断.ppt(78页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、机械设备故障诊断技术 -滚动轴承故障诊断,北京科技大学 机械工程学院黎敏 阳建宏2019/12/6,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,概述,滚动轴承是旋转机械中的重要零件滚动轴承的优点摩擦系数小,运动精度高对润滑剂的黏度不敏感,多数滚动轴承可使用润滑脂低速下也能承受载荷产品已经国际标准化,易于大批量生产,成本低廉,互换性好滚动轴承的缺点承受冲击的能力差滚动体上的载荷分布不均匀,概述,滚动轴承的组成外圈内圈滚动体保持架按承载方向分类向心轴承推力轴承向心推力轴承,概述,滚动轴承的安装冷压法和热套法压力机、手锤和套筒、润滑剂、加热器等滚动轴承的拆卸

2、使用专门的拆卸工具,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,疲劳剥落 磨损 锈蚀 塑性变形 断裂 胶合 保持架损坏,常见故障形式,疲劳剥落原因内外滚道和滚动体表面既承受载荷又相对滚动,交变载荷的作用,在表面下一定深度处形成裂纹,裂纹扩展到接触表面使表层发生剥落坑后果造成运转时的冲击载荷、振动和噪声加剧,滚动轴承故障诊断常见故障形式及原因,内圈疲劳失效,外圈疲劳失效,常见故障形式,疲劳剥落是轴承失效的主要形式一般所说的轴承寿命就是指轴承的疲劳寿命滚动轴承的额定寿命在滚道或滚动体上出现面积为0.5mm2的疲劳剥落坑就认为轴承寿命终结同一批轴承中,最高寿

3、命与最低寿命可以相差几十倍甚至上百倍,因此正确诊断轴承故障可以合理利用轴承的寿命,滚动轴承故障诊断常见故障形式及原因,常见故障形式,磨损原因尘埃、异物的侵入润滑不良后果轴承游隙增大,表面粗糙度增加轴承运转精度降低,振动和噪声增大,滚动轴承故障诊断常见故障形式及原因,常见故障形式,锈蚀原因水分或酸、碱性物质的侵入轴承停止工作后,轴承温度下降,空气中的水分凝结电流通过,引起电火花而产生电蚀后果高精度轴承由于表面锈蚀导致精度丧失而不能正常工作,滚动轴承故障诊断常见故障形式及原因,滚动轴承故障诊断常见故障形式及原因,塑性变形原因:轴承受到过大的冲击载荷或静载荷硬度很高的异物侵入后果:运转过程中产生剧烈

4、的振动和噪声压痕引起的冲击载荷会进一步引起附近表面的剥落胶合原因:在润滑不良、高速重载情况下工作时,由于摩擦发热,轴承零件可以在极短时间内达到很高的温度,使一个表面上的金属粘附到另一个表面上后果:出现压痕,产生剥落区,常见故障形式,滚动轴承故障诊断常见故障形式及原因,保持架损坏原因:由于装配或使用不当可能会引起保持架发生变形后果:保持架和滚动体之间的摩擦增大,甚至使某些滚动体卡死不能滚动,也有可能造成保持架与内外圈发生摩擦会进一步使振动、噪声与发热加剧,导致轴承损坏断裂原因:过高的载荷可能引起轴承零件断裂金属材料有缺陷和热处理不良转速过高,润滑不良后果:轴承出现裂纹,加速劣化,常见故障原因综述

5、,装配不当润滑不良腐蚀水分和异物侵入征兆是在滚道、滚子、保持架或其他位置出现红棕色区域过热征兆是滚道,球和保持架变色,从金色变为蓝色温度超过400F(204)使滚道和滚动体材料退火硬度降低导致轴承承重降低和早期失效严重情况下引起变形,另外温升高会降低和破坏润滑性能过载引起过早疲劳(包括过紧配合,布氏硬度凹痕和预负荷),滚动轴承故障诊断常见故障形式及原因,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,疲劳剥落磨损锈蚀塑性变形断裂胶合保持架损坏,装配不当 润滑不良 腐蚀 过热 过载,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障

6、诊断技术,轴承结构特点引起的振动 轴承制造装配原因引起的振动 故障缺陷引起的振动,轴承结构特点引起的振动滚动轴承承载时,由于不同的位置承载的滚动体数目不同,因而承载刚度会有变化,引起轴心的起伏波动采用游隙较小的轴承或加预紧力可减小此振动,滚动轴承的承载刚度和滚子位置的关系,振动原因分析,滚动轴承故障诊断振动机理,轴承的装配制造原因引起的振动在轴承制造过程中,加工设备的振动而产生加工面的波纹度滚动体大小不均匀引起轴心摆动,振动原因分析,滚动轴承故障诊断振动机理,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,轴承结构特点引起的振动 轴承制造装配原因引起的振动

7、 故障缺陷引起的振动,磨损 偏心 胶合 疲劳剥落损伤 内滚道损伤 外滚道损伤 滚动体损伤,轴承磨损随着磨损的进行,振动加速度峰值和RMS值缓慢上升,振动信号呈现较强的随机性峰值与RMS值的比值从5左右逐渐增加到5.56,轴承磨损时振动加速度,振动原因分析-故障缺陷引起的振动,滚动轴承故障诊断振动机理,严重磨损导致轴承偏心轴承出现偏心,当轴旋转时,轴心便会绕外圈中心摆动,振动原因分析-故障缺陷引起的振动,滚动轴承故障诊断振动机理,胶合在A点以前,振动加速度略微下降,温度缓慢上升 A点之后振动值急剧上升,而温度却还有些下降,这一段轴承表面状态已恶化 在B点之前,轴承中已有明显的金属与金属的直接接触

8、和短暂的滑动B点之后有更频繁的金属之间直接接触及滑动,润滑剂恶化甚至发生炭化,直至发生胶合 从图中可以看出,振动值比温度能更早地预报胶合的发生,由此可见轴承振动是一个比较敏感的故障参数,振动原因分析-故障缺陷引起的振动,滚动轴承故障诊断振动机理,振动,温度,疲劳剥落损伤当轴承零件上产生了疲劳剥落坑后,在轴承运转中会因为碰撞而产生冲击脉冲钢球冲击过程在碰撞点产生很大的冲击加速度(a图和b图),大小和冲击速度成正比构件变形产生衰减自由振动(c图)振动频率取决于系统的结构,为其固有频率(d图)振幅的增加量A也与冲击速度成正比,振动原因分析-故障缺陷引起的振动,滚动轴承故障诊断振动机理,a,疲劳剥落损

9、伤疲劳剥落故障轴承的振动信号T取决于碰撞频率,T=1/f碰,振动原因分析-故障缺陷引起的振动,滚动轴承故障诊断振动机理,轴承外滚道损伤轴承内滚道损伤滚动体损伤,振动原因分析-故障缺陷引起的振动,滚动轴承故障诊断振动机理,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,轴承结构特点引起的振动 轴承制造装配原因引起的振动 故障缺陷引起的振动,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,振动测量简易诊断精密诊断,振动测量,测点的选择测量点应尽量靠近被测轴承的承载区,应尽量减少中间传递环节,探测点离轴承外圈的距离越近越直接

10、越好应尽量考虑在水平(x)、垂直(y)和轴向(z)三个方向上进行振动检测,滚动轴承故障诊断故障诊断技术,止推轴承,振动测量,传感器的选择与固定方式滚动轴承的振动可能是频率为1kHz以下的低频脉动,也有可能是频率在1kHz以上,数千赫兹甚至数十千赫兹的高频振动,通常二者皆有传感器获取的信号应同时覆盖上述两个频带传感器的尺寸和重量应尽可能小建议采用钢制螺栓固定,振动测量,分析谱带的选择低频段低频率段指1kHz以下的频率范围 一般可以采用低通滤波器(例如截止频率fb1kHz)滤去高频成分后再作频谱分析 此法可直接观察频谱图上相应的特征谱线,做出判断 这个频率范围容易受到机械及电源干扰,并且在故障初期

11、反映故障的频率成分在低频段的能量很小。因此,信噪比低,故障检测灵敏度差中频段 中频段指1k20kHz频率范围 使用截止频率为1kHz的高通滤波器滤去1kHz以下的低频成分,以消除机械干扰;用信号的峰值、RMS值或峭度指标作为监测参数 使用带通滤波器提取轴承零件或结构零件的共振频率成分,用通带内的信号总功率作为监测参数,滚动轴承故障诊断故障诊断技术,振动测量,分析谱带的选择高频段高频率段指2080kHz频率范围 轴承故障引起的冲击有很大部分冲击能量分布在高频段如果采用合适的加速度传感器和固定方式保证传感器较高的谐振频率,利用传感器的谐振或电路的谐振增强所得到衰减振动信号,对故障诊断非常有效瑞典的

12、冲击脉冲计(SPM)和美国首创的IFD法就是利用这个频段,滚动轴承故障诊断故障诊断技术,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,振动测量简易诊断精密诊断,获取数据,简易诊断,目的简易诊断:判断滚动轴承是否出现了故障精密诊断:判断故障轴承的故障类别及原因滚动轴承故障的简易标准 绝对判定标准 绝对判定标准是指用于判断实测振值是否超限的绝对量值相对判定标准 对轴承的同一部位定期进行振动检测,并按时间先后进行比较,以轴承无故障情况下的振值为基准,根据实测振值与该基准振值之比来进行判断的标准,滚动轴承故障诊断故障诊断技术,简易诊断,振动信号简易诊断法 振幅值

13、诊断法 振幅值指峰值、均方根值峰值反映的是某时刻振幅的最大值,因而它适用于像表面点蚀损伤之类的具有瞬时冲击的故障诊断;对于转速较低的情况(如300r/min以下),也常采用峰值进行诊断 均方根值是对时间平均的,因而它适用于像磨损之类的振幅值随时间缓慢变化的故障诊断,滚动轴承故障诊断故障诊断技术,简易诊断,振动信号简易诊断法 波形因数诊断法 波形因数:峰值与均值之比 当波形因数值过大时,表明滚动轴承可能有点蚀;而波形因数小时,则有可能发生了磨损,滚动轴承故障诊断故障诊断技术,简易诊断,振动信号简易诊断法 波峰因数诊断法 波峰因数:峰值与均方根值之比 不受轴承尺寸、转速及载荷的影响,也不受传感器、

14、放大器等一、二次仪表灵敏度变化的影响 当滚动轴承无故障时,Xp/Xrms,为一较小的稳定值 一旦轴承出现了损伤,则会产生冲击信号,振动峰值明显增大,但此时均方根值尚无明显的增大,故Xp/Xrms增大 当故障不断扩展,峰值逐步达到极限值后,均方根值则开始增大,Xp/Xrms逐步减小,直至恢复到无故障时的大小,滚动轴承故障诊断故障诊断技术,简易诊断,振动信号简易诊断法 峭度系数诊断法 振幅满足正态分布规律的无故障轴承,其峭度值约为3。随着故障的出现和发展,峭度值具有与波峰因数类似的变化趋势与轴承的转速、尺寸和载荷无关,主要适用于点蚀类故障的诊断,滚动轴承故障诊断故障诊断技术,实验中第74h轴承发生

15、了疲劳破坏,峭度系数由3上升到6,而此时峰值和RMS值尚无明显增大故障进一步恶化后,峰值、RMS值才有所反映,简易诊断,振动信号简易诊断法 概率密度诊断法无故障轴承:典型正态分布曲线有故障轴承:概率密度曲线可能出现偏斜或分散,滚动轴承故障诊断故障诊断技术,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,冲击脉冲诊断法(SPM,即Shock Pulse Method) 特点无须专业人员进行分析,可直接得到轴承损伤程度诊断快捷、准确,可作为滚动轴承监测的主要手段同样适用于低转速轴承可轻易获得轴承早期故障信息,滚动轴承故障诊断故障诊断技术,简易诊断-SPM,冲击

16、脉冲诊断法(SPM,即Shock Pulse Method) 冲击脉冲由于接触面上的物体发生碰撞而产生的振动与振动不同:振动是连续的;冲击脉冲是断续的;冲击能量的大小取决于物体碰撞时的冲击速度物体表面的凹凸不平度,滚动轴承故障诊断故障诊断技术,简易诊断-SPM,冲击脉冲的强弱反映了故障程度,冲击脉冲诊断法(SPM,即Shock Pulse Method),滚动轴承故障诊断故障诊断技术,简易诊断-SPM,冲击脉冲诊断法(SPM,即Shock Pulse Method)微弱冲击容易被淹没在噪声中,Unbalance,Peaks around the resonans frequency,Band

17、pass filter,简易诊断-SPM,冲击脉冲诊断法(SPM,即Shock Pulse Method),0,01,.,After envelop,After rectifying,简易诊断-SPM,冲击脉冲诊断法(SPM,即Shock Pulse Method),简易诊断-SPM,FFT,冲击脉冲诊断法(SPM,即Shock Pulse Method)dBsv :衡量冲击脉冲能量强度的绝对值dBi: 滚动轴承初始值dBN: 评定滚动轴承工作状态,简易诊断-SPM,冲击脉冲诊断法(SPM,即Shock Pulse Method) 标准冲击能量(dBN):总冲击能量与初始冲击能量之差0dBN2

18、0dB 正常状态,轴承工作状态良好20dBdBN35dB 注意状态,轴承有初期损伤35dBdBN60dB 警告状态,轴承已有明显损伤,滚动轴承故障诊断故障诊断技术,简易诊断-SPM,冲击脉冲诊断法(SPM,即Shock Pulse Method),滚动轴承故障诊断故障诊断技术,简易诊断-SPM,评价指标,分析流程,方法原理,研究对象,滚动轴承故障诊断,概述滚动轴承故障形式与原因滚动轴承的振动机理滚动轴承的故障诊断技术,振动测量简易诊断精密诊断,获取数据,常用特征值 波峰因数 波形因数 概率密度 峭度 SPM,几何参数Z滚珠个数d滚珠直径D轴承滚道节径接触角r1内圈滚道半径r2外圈滚道半径,滚动

19、轴承故障诊断精密诊断,精密诊断,精密诊断,滚动轴承特征频率,滚动轴承故障诊断精密诊断,保持架旋转频率,滚动体的公转频率,滚动体通过外圈一点的频率,滚动体通过内圈一点的频率,内圈旋转频率,内外圈相对旋转频率,内圈故障频率: fi = 0.6zfr 外圈故障频率: fo = 0.4zfr 保持架故障频率:fc =0.381 0.4fr 滚动体故障频率:fb = 0.23zfr (z 10),外圈与保持架关系: fo = zfc 外圈与内圈关系: fo + fi = zfr,故障频率经验公式,( fr 为转频 ;z为滚动体个数 ),精密诊断,滚动轴承故障诊断精密诊断,精密诊断,关于特征频率的几点说明

20、:公式计算时假设外圈与轴承座没有相对运动实际频率与上述理论计算值会有出入,所以在谱图上寻找各特征频率时应找其近似值来判断公式是指“一个剥落坑”时,若有n个剥落坑,仍是此公式特征频率都是轴工作转速的非同步频率,滚动轴承故障诊断精密诊断,内圈故障频率: fi = 0.6zfr 外圈故障频率: fo = 0.4zfr 保持架故障频率:fc =0.381 0.4fr 滚动体故障频率:fb = 0.23zfr (z 10),滚动体产生损伤时,缺陷部位通过内圈或外圈滚道表面时会产生冲击振动滚动轴承无径向间隙时,会产生频率为nZfb的冲击振动有径向间隙时,根据损伤部位与内圈或外圈发生冲击接触的位置不同,会发

21、生以保持架旋转频率fc 进行振幅调制的情况。,精密诊断,滚动轴承故障诊断精密诊断,轴承滚动体故障,内滚道产生损伤时,如剥落、裂纹、点蚀等,若滚动轴无径向间隙,会产生频率为 nZfi 的冲击振动 通常滚动轴承都有径向间隙,且为单边载荷,根据损伤部分与滚动体发生冲击接触的位置不同,振动的振幅会发生周期性的变化,即发生振幅调制。,轴承内圈故障,精密诊断,滚动轴承故障诊断精密诊断,轴承外圈故障,外滚道产生损伤时,在滚动体通过时也会产生冲击振动 由于损伤的位置与载荷方向的相对位置关系是一定的,所以不存在振幅调制的情况,精密诊断,滚动轴承故障诊断精密诊断,滚动轴承如果存在润滑不良造成的干磨擦故障,在时域波

22、形中会出现削波现象,轴承摩擦,精密诊断,滚动轴承故障诊断精密诊断,滚动轴承故障诊断,某厂煤粉1#废气风机轴承故障诊断某厂大脱硫风机轴承故障诊断,滚动轴承故障诊断,废气风机设备简图及测点布置图,设备参数,电机转速 943 r/min 电机容量 630kw 测点3轴承型号 SKF22230滚动体个数21,废气风机诊断案例,计算特征频率,转频 fr = 943 /60 = 15.72 Hz 内圈故障频率 fr = 0.6*Z* fr = 198.10Hz 外圈故障频率fo = 0.4*Z* fr =132.02 Hz,滚动轴承故障诊断,幅域特征值分析(单位:mm/s),超过ISO2372国际标准中“

23、C”级振动强度等级7.1 mm/s,属于“不满意”状态,废气风机诊断案例,滚动轴承故障诊断,转频16.56Hz及谐波,非同步频率135.31Hz及谐波,测点3 V 低频分析,2007.08.10,非同步频率135.31Hz及谐波,2007.08.21,转频16.56Hz及谐波,特征频率幅值增大4倍,废气风机诊断案例,滚动轴承故障诊断,测点3 V 共振解调分析,2007.08.10,故障频率135.31Hz及谐波,2007.08.21,故障频率135.31Hz及谐波,特征频率幅值增大,并被转频所调制,0.07,0.05,0.03,0.01,0,废气风机诊断案例,滚动轴承故障诊断,测点3 A 低频

24、分析,2007.08.10,非同步频率135.31Hz及谐波,调制频率16.56Hz,故障频率135.31Hz及谐波,转频16.56Hz的边带,2007.08.21,2.0,1.5,1.0,0.5,0,9,7,5,3,1,特征频率幅值增大4倍,废气风机诊断案例,滚动轴承故障诊断,测点3 A 共振解调分析,2007.08.10,转频16.56Hz及其谐波,故障频率135.16Hz及其谐波,转频16.56Hz及其谐波,故障频率135.16Hz及其谐波,2007.08.21,0.1,0.08,0.06,0.04,0.02,0,0.18,0.12,0.08,0.04,0,特征频率幅值明显增大,废气风机

25、诊断案例,滚动轴承故障诊断,测点3 A 时域分析,2007.08.10,削波现象,削波处,2007.08.21,废气风机诊断案例,滚动轴承故障诊断,诊断结论,经过两次测量比较,轴承故障特征频率135.31Hz增长显著,且带转轴边带 。根据计算故障频率135.31Hz是轴承外圈特征频率,因此可以确定轴承外圈出现故障,滚动体与内圈或外圈局部有碰磨现象,从而造成轴承温度升高,生产验证,点蚀严重,废气风机诊断案例,滚动轴承故障诊断,诊断案例,某厂煤粉1#废气风机轴承故障诊断某厂大脱硫风机轴承故障诊断,滚动轴承故障诊断,大脱硫风机诊断案例,大脱硫风机设备简图及测点布置图,设备参数,电机转速 850 r/

26、min 液力耦合器输入轴转速850r/min、输出轴转速 740 r/min风机两测滚动轴承型号:22344CA 滚动体个数13,计算特征频率,转频 fr = 740 /60 = 12.33 Hz 内圈故障频率 fr = 0.6*Z* fr = 96.2 Hz 外圈故障频率fo = 0.4*Z* fr = 64.1 Hz,滚动轴承故障诊断,幅域特征值分析(单位:mm/s),超过ISO2372国际标准中“C”级振动强度等级7.1 mm/s,属于“不满意”状态,大脱硫风机诊断案例,滚动轴承故障诊断,测点3 V 高频分析,2006.09.13,2007.01.29,1.2,0.9,0.6,0.3,R

27、MS Acceleration in G-s,自由能量加大幅值增大,大脱硫风机诊断案例,1.5,1.2,0.8,0.6,RMS Acceleration in G-s,0.3,200,400,600,800,1000,滚动轴承故障诊断,测点3 V 低频分析,2006.09.13,2007.01.29,非同步频率60.31Hz及谐波,非同步频率63.91Hz及谐波,大脱硫风机诊断案例,滚动轴承故障诊断,测点3 V 共振解调分析,2006.09.13,2007.01.29,故障频率63.91Hz及谐波,60.31Hz频率及谐波,幅值增大5倍,大脱硫风机诊断案例,滚动轴承故障诊断,测点3 H 高频分

28、析,2006.09.13,2007.01.29,自由能量加大,大脱硫风机诊断案例,滚动轴承故障诊断,测点3 H 低频分析,2006.09.13,2007.01.29,非同步频率60.31Hz及谐波,非同步频率63.91Hz及谐波,大脱硫风机诊断案例,滚动轴承故障诊断,测点3 H 共振解调分析,2006.09.13,2007.01.29,频率60.31Hz及谐波,频率63.91Hz及谐波,幅值增大5倍,大脱硫风机诊断案例,滚动轴承故障诊断,测点3 时域分析,2006.09.13,2007.01.29,大脱硫风机诊断案例,滚动轴承故障诊断,诊断结论:轴承外圈松动,轴承安装精度不够,造成轴承间隙大小不均使轴 承与轴承座产生相对运动而引起碰摩,部件之间有明显松动现象,并且轴承对中精度不好,从而造成轴承损坏的综合故障,出现严重剥落,大脱硫风机诊断案例,滚动轴承故障诊断,大脱硫风机诊断案例,总结,废气风机诊断案例,齿轮故障诊断:, 啮合频率的倍频、边频的幅值是否变化 啮合频率与边频的差值确定发生故障的齿轮,滚动轴承故障诊断:,只有出现故障时,内圈、外圈、滚动体的频率才会出现 故障频率的倍频、边频的多少反映故障严重程度,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 标准材料 > 机械标准

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com