非晶硅太阳电池技术的发展.wps

上传人:阿宝 文档编号:2030028 上传时间:2019-11-16 格式:WPS 页数:4 大小:21.50KB
返回 下载 相关 举报
非晶硅太阳电池技术的发展.wps_第1页
第1页 / 共4页
非晶硅太阳电池技术的发展.wps_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《非晶硅太阳电池技术的发展.wps》由会员分享,可在线阅读,更多相关《非晶硅太阳电池技术的发展.wps(4页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、非晶硅太阳电池技术的发展非晶硅太阳电池技术的发展3 31 1 非晶硅太阳电池技术完善与提高非晶硅太阳电池技术完善与提高由于发展势头遭到挫折,80年代未 m年代初,非晶硅太阳电他的发展经历了一个调整、完善和提高的时期。人们一方面加强了探索和研究,一方面准备在更高技术水平上作更大规模的产业化开发,中心任务是提高电他的稳定化效率。为此探索了许多新器件结构、新材料、新工艺和新技术,其核心就是完美结技术和叠层电池技术。在成功探索的基础上,90年代中期出现了更大规模产业化的高潮,先后建立了多条数兆瓦至十兆瓦高水平电池组件生产线,组件面积为平方米量级,生产流程实现全自动。 采用新的封装技术,产品组件寿命在

2、10 年以上。组件生产以完美结技术和叠层电池技术为基础,产品组件效率达到6-8;中试组件(面积 900cm2左右)效率达9-11;小面积电池最高效率达14.6。3 32 2 完奏结技求完奏结技求完美结技术是下列技术的组合:(1)采用带织构的sio2snO2ZnO 复合透明导电膜代替 ITO或Sn02单层透明导电电极。复合膜电极具有阻挡离子污染、增大入射光吸收和抗等离子还原反应的效果。(2)在TCOp 界面插入污掺杂层以克服界面壁垒。 (3)p层材料采用宽带隙高电导的微晶薄膜,如c-sic,可以减少 P层的光吸收损失;减少电他的串联电阻。 (4)为减少 pi界面缺陷,减少二极管质量因子,在p/i

3、 界面插入C含量缓变层。此层的最佳制备方法是交替淀积与氢处理法。 (5)低缺陷低氢含量的i 层。 用精确控制掺杂浓度的梯度掺杂法,使离化杂质形成的空间电荷与光照产生的亚稳空间电荷中和,保持稳定均匀的内建电场。 这是从器件结构上消除光致衰退效应的又一种方案。 (6)in 界面缓变以减少界面缺陷。 (7)采用 K一 kS 可以减少电池的串联电阻,同时减少长波长光的损失。(8)采用znOA1 复合背电极增强对长波长光的反射,增加在电池中的光程,从而增加太阳电他的光的吸收利用。值得一提的是,我国在“八五”攻关中采用此类技术,实现大面积组件电池6.55的稳定效率,小面积电池单结开路电压高达1.12V。3

4、 33 3 叠层电池技术叠层电池技术减薄a-Si 太阳电他的 i层厚度可以增强内建电场,减少光生载流子通过带隙缺陷中心和或光生亚稳中心复合的几率,又可以增加载流子移动速率,同时增加电他的量子收集效率和稳定性。 但是,如果 i层大薄又会影响入射光的充分吸收,导致电池效率下降。 为了扬长避短,人们想到了多薄层电池相叠的结构。 起先是两个 pin结的叠层艰pa-Sia-Si 叠层电池,其稳定化效率有所提高。 我国用此结构做出组件电池(400cm2)稳定化效率达735。一种材料的太阳电池可以利用波长比1.24Eg(m)更短的谱域的光能。 如果把具有不同带隙(Eg)材料的薄膜电池叠加,则可利用更宽谱域的

5、光能,由此可提高大阳电他的效率。 异质叠层太阳电池中,利用宽带隙材料作顶电池,将短波长光能转变为电能;利用窄带隙材料作底电池,将长波长光能转变为电能。 由于更加充分地利用了阳光的谱域,异质叠层太阳电池应有更高的光电转换效率,同时具有抑制光致衰退的效果。形成异质叠层太阳电他的材料的带隙必须有恰当的匹配才可能获得最佳的效果。 目前流行的非晶硅锗为基础的异质叠层太阳电池较好的匹配带隙分别为1。 8eV、 1。 6eV、 1。 4eV。 除了匹配带隙的要求外,组成叠层太阳电他的各子电池中光电流应基本相等;子电池之间的p/n 结应为高透光高电导的隧道结。3 34 4 新材料探索新材料探索探索的宽带隙材料

6、主要有,非晶硅碳、非晶硅氧:微晶硅、微晶硅碳等,这些材料主要用于窗口层。 顶电池的 i层主要是宽带隙非晶硅和非晶硅碳。最受重视的窄带隙材料是非晶硅锗。改变硅锗合金中锗含量,材料的带隙在1.1eV 到1.7eV范围可调。硅与锗的原子大小不一,成键键能不同,非晶硅锗膜通常比非晶硅缺陷更多。 膜中硅与锗原子并不是均匀混合分布的,氢化时,氢择优与硅键合,克服这些困难的关键是,采用氢稀释沉积法和掺氟。 这些材料的光电子特性可以做得很好,但氢含量通常偏高,材料的光致衰退依然存在,叠层结构在一定程度上抑制了它对电池性能的影响。3 35 5 新技术探索新技术探索为了提高非晶硅太阳电他的初始效率和光照条件下的稳

7、定性,人们探索了许多新的材料制备工艺。 比较重要的新工艺有:化学退火法、 脉冲氖灯光照法、 氢稀释法、 交替淀积与氢处理法、 掺氟、 本征层掺痕量硼法等。此外,为了提高a-Si 薄膜材料的掺硼效率,用三甲基硼代替二乙硼烷作掺杂源气。为了获得a 一Si膜的高淀积速率,采用二乙硅烷代替甲硅烷作源气。所谓化学退火,就是在一层一层生长a-Si 薄膜的间隔,用原子氢或激活的Ar、He 原子来处理薄膜,使表面结构弛豫,从而减少缺陷和过多的氢,在保证低隙态密度的同时,降低光致衰退效应。 这里,化学处理粒子是用附加的设备产生的。氢稀释法则采用大量(数十倍)氢稀释硅烷作源气淀积a-Si合金薄膜。实际上,一边生长

8、薄膜一边对薄膜表面作氢处理。原理一样,方法更简单,效果基本相当。交替淀积与氢处理则是,重复进行交替的薄膜淀积与氢等离子体处理,这是上述两种方法的结合。 脉冲氖灯光照法是在一层一层生长 a-Si 薄膜的间隔,周期地用脉冲氖灯光照处理薄膜表面,其稳定性有显著提高。在制备a-Si 的源气中加入适量的四氟化硅就可实现 a-Si 掺氟。掺氟使硅网络结构更稳定。本征a-Si呈弱 n型,掺入痕量硼可将费米能级移向带隙中央,既可提高光灵敏度又可减少光致衰退。3 36 6 新制备技术探索新制备技术探索射频等离子体增强CVD 是当今普遍采用的制备a-Si合金薄膜的方法。它的主要优点是:可以用较低的衬底温度(200

9、C左右),重复制备大面积均匀的薄膜,制得的氢化a-Si 合金薄膜无结构缺陷、台阶覆盖良好、 隙态密度低、 光电子特性符合大面积太阳电他的要求。此法的主要缺点也是致命的缺点是,制备的a-Si 膜含氢量高,通常有 10-15氢含量,光致衰退比较严重。因此,人们一方面运用这一方法实现了规模化生产,另一方面又不断努力探索新的制备技术。与RF-PECVD 最相近的技术有,超高真空PECVD技术,甚高频(VHF)PECVD技术和微波(包括 ECR)PECVD 技术。 激发等离子体的电磁波光子能量不同,则气体分解粒子的能量不同,粒子生存寿命不 同,薄膜的生成及对膜表面的处理机制不同,生成膜的结构、电子特性及稳定性就会有区别。 VHF 和微波 PECVD在微晶硅的制备上有一定的优势。其它主要新技术还有,离子束淀积a-Si 薄膜技术,HOMO-CVD技术和热丝CVD 技术等。离子束淀积 a-Si合金薄膜时,包括硅烷在内的反应气体先在离化室离化分解,然后形成离子束,淀积到衬底上,形成结构 较稳定的a-Si 合金薄膜。 HOMO-CVD技术通过加热气体,使之热分解,分解粒子再淀积在衬底上。 成膜的先级粒子寿命较长,膜的电子性能良好,氢含量低,稳定性较好。 这两种技术成膜质量虽好,但难以形成产业化技术。 热丝 CVD技术也是较有希望的优质薄膜硅的高速制备技术。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术规范

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com