低成本、高精度的电池测试设备数字控制方案.docx

上传人:安*** 文档编号:17778227 上传时间:2022-05-26 格式:DOCX 页数:6 大小:65.33KB
返回 下载 相关 举报
低成本、高精度的电池测试设备数字控制方案.docx_第1页
第1页 / 共6页
低成本、高精度的电池测试设备数字控制方案.docx_第2页
第2页 / 共6页
点击查看更多>>
资源描述

《低成本、高精度的电池测试设备数字控制方案.docx》由会员分享,可在线阅读,更多相关《低成本、高精度的电池测试设备数字控制方案.docx(6页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、低成本、高精度的电池测试设备数字控制方案电池测试设备,是锂离子电池生产线后处理系统的重要环节,对于锂离子电池的质量至关重要。电池测试设备的核心功能是对锂离子电池进行高精度的恒流或恒压充放电,传统的控制方法以使用分立器件搭建的模拟控制方案为主。相比于传统的模拟控制方案,采用TI的C2000为核心实现的数字控制方案,由于其低成本、高精度、更灵敏、保密性较好等优点,将成为将来电池测试设备主流的发展方向。本文中,将具体介绍怎样通过TI的C2000数字控制方案,有效降低系统成本,并保证极高的电流、电压控制精度。1低成本采用TI的C2000数字控制方案的典型构造如图1所示:电流/电压放大器对电池充放电的电

2、流/电压进行采样,通过模数转换器ADC将模拟信号转化为数字信号并送入C2000中,C2000根据恒流或恒压指令与采样信号进行环路计算,输出一定占空比的PWM进而调节MOSFET的开关,最终使得buck/boost变换器根据指令通过恒流或恒压的方式对锂电池进行充放电。图1相比于模拟方案,由于电压、电流指令和环路控制都在C2000中产生和完成,省去了高分辨率的数模转换器DAC和误差放大器,有效地降低了系统成本。TMS320F280049是具有100MHz主频、256KB闪存的C200032位MCU,通过高分辨率的16bitPWM,最多能够控制8个独立通道的同步buck/boost变换器。采用TMS

3、320F280049的数字控制方案,比传统的模拟控制方案能够节省30%以上的BOM成本。此外,由于锂离子电池在3C产品、电动汽车、储能等众多领域都有广泛应用,各类锂离子电池的电流往往差异很大。这导致了电池测试设备若采用模拟控制,往往需要根据电流大小选取不同的硬件方案,增加了研发周期与设备成本。假如采用C2000的数字控制方案,则能够在不改变硬件的前提下,在小电流或大电流形式间自由切换:在小电流时,8各通道能够分别独立运行;在大电流时,则将多个通道并联运行,以输出更大的电流。图2如图2所示,在多通道并联运行时,每个通道都将采用同一个恒压环路,恒流环路则各自独立,只需将输出并联后就能够实现更大的输

4、出电流范围。因而,相比于模拟控制,采用C2000的数字控制方案,能够在不改变硬件的条件下适应更广泛的测试场景,大大减少了设备成本。2高精度通过校准,电池测试设备往往能够除去大部分初始系统误差。剩余难以被校准的误差;主要包括:电流检测电阻的温漂,电流、电压检测放大器的失调与增益温漂、输入共模电压变化带来的失调,ADC的非线性度,基准电压源的温漂。在本文中,根据5C的温度变化范围计算误差值。电流检测电阻:电流检测电阻的温漂是总系统误差的重要;,对于CC控制,需要一个几毫欧并且低温度系数的高精度电流检测电阻。本文采用高精细、电流感应金属条SMD功率电阻器,检测电阻的阻值为5m,温漂值为10ppm。那

5、么,由于电流检测电阻的温漂造成的误差为50ppm。电流检测放大器:为了减小大电流造成的温升和功率损耗,电流检测电阻的阻值一般较小,因而电流检测放大器的输入差分信号一般不超过几十毫伏,往往选择仪表放大器进行信号调理。仪表放大器的误差主要;于下面两个方面:环境温度改变时,失调电压和增益的漂移;电池电压改变时,由于输入共模电压变化造成的失调电压。因而,在选择仪表放大器时,应该主要关注失调电压漂移、增益漂移、CMRR等参数。表1为TI主推的几款应用于电池测试设备的仪表放大器的关键参数:表1INA821作为一款高精细、低漂移的仪表放大器,失调电压漂移最大值为0.4V/C,那么5C温度偏移将会产生2V失调

6、电压,即40ppm满量程误差;增益漂移为5ppm/C,那么5C温度偏移会产生25ppm误差;共模电压抑制比为140dB,那么输入共模电压范围在05V变化时,将产生0.5V失调电压。在10A充电电流下,满量程采样电阻的电压信号为50mV,即输入共模电压变化带来10ppm满量程误差。电压检测放大器:电压检测放大器的误差;同样主要;于失调电压和增益的漂移,以及输入共模电压变化造成的失调电压。因而,在选择仪表放大器时,同样应该主要关注失调电压漂移、增益漂移、CMRR等参数。TLV07是一款成本敏感型、低噪声、轨到轨输出、精细运算放大器,失调电压漂移的典型值为0.9V/C,那么5C温度偏移将会产生4.5

7、V失调电压,即1ppm满量程误差;增益漂移主要受输入电阻与反应电阻的漂移误差的影响,在这里取5ppm/C,那么5C温度偏移会产生25ppm误差。共模电压抑制比最小值为104dB,那么输入共模电压范围在05V变化时,将产生31.5V失调电压,即6ppm满量程误差。模数转换器及基准电压源:模数转换器ADC的误差主要是由于非线性度和基准电压源的漂移造成的。ADS131M08是24位、32kSPS、8通道同步采样的-高精度ADC,由于ADS131M08是差分输入,能够有效减小由于各通道间串扰引起的误差。从数据表中能够查到,ADS131M08的非线性度INL仅为7.5ppm满量程误差。假如采用内部基准电压源,温漂最大值为20ppm/C,那么5C温度偏移会产生100ppm误差。假如采用外部基准电压源REF2025,温漂最大值仅为8ppm/C,那么5C温度偏移误差将会降至40ppm。误差汇总:根据以上分析,将各误差;造成的误差值汇总,即可计算得到在恒流、恒压控制时,电池测试设备的系统总误差如表2所示。能够看到,采用C2000的数字控制方案,电流和电压误差范围都在万二以内,到达了极高的控制精度。表2综上所述,在电池测试设备中采用TI的C2000数字控制方案,在降低系统成本的同时,能够保证极高的电流、电压控制精度,非常合适在各类电池测试方案中的应用。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com