灰铸铁缺陷分析.doc

上传人:豆**** 文档编号:17673383 上传时间:2022-05-25 格式:DOC 页数:17 大小:186KB
返回 下载 相关 举报
灰铸铁缺陷分析.doc_第1页
第1页 / 共17页
灰铸铁缺陷分析.doc_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《灰铸铁缺陷分析.doc》由会员分享,可在线阅读,更多相关《灰铸铁缺陷分析.doc(17页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流灰铸铁缺陷分析内容摘要:铸铁不是纯铁,它是一种以Fe、C、Si为主要成分且在结晶过程中具有共晶转变的多元铁基合金。为了提高铸铁的机械性能 ,通常在铸铁成分中添加少量Cr、Ni、C。、Mi、等合金元素制成合金铸铁。1 铸铁的特点和分类一、铸铁的特点1.成分与组织特点铸铁与碳钢相比较,其化学成分中除了有较高的C、Si含量外(C2.5%4,0%、Si1.0%一3.0%),还含有较高的杂质元素Mn、P,S,在特殊性能的合金铸铁中,还含有某些合金元素。铸铁不是纯铁,它是一种以Fe、C、Si为主要成分且在结晶过程中具有共晶转变的多元铁基合金。化学成分一般

2、为:C2.5%-4.0%、Si1.0%一3,0%、P0.4%1.5%、S0.02%-02%。为了提高铸铁的机械性能 ,通常在铸铁成分中添加少量Cr、Ni、C。、Mi、等合金元素制成合金铸铁。 1 铸铁的特点和分类 一、铸铁的特点 1.成分与组织特点 铸铁与碳钢相比较,其化学成分中除了有较高的C、Si含量外(C2.5%4,0%、Si1.0%一3.0%),还含有较高的杂质元素Mn、P,S,在特殊性能的合金铸铁中,还含有某些合金元素。所有这些元素的存在及其含量,都将直接影响铸铁的组织和性能。 由于铸铁中的碳主要是以石墨(G)形式存在的,所以铸铁的组织是由金属基体和石墨所组成的。铸铁的金属基体有珠光体

3、、铁素体和珠光 体加铁素体三类,它们相当于钢的组织。因此,铸铁的组织特点,可以看成是在钢的基体上分布着不同形状的石墨。 2.铸铁的性能特点 铸铁的抗拉强度、塑性和韧性要比碳钢低。虽然铸铁的机械性能不如钢,但由于石墨的存在,却赋予铸铁许多为钢所不及的性能。如良好的耐磨性、高消振性、低缺口敏感性以及优良的切削加工性能。此外 ,铸铁的碳含量高,其成分接近于共晶成分,因此铸铁的熔点低,约为1200左右,铁水流动性好,由于石墨结晶时体积膨胀,所以传送收缩率小,其铸造性能优于钢,因而通常采用铸造方法制成铸件使用,故称之为铸铁。 二、铸铁的分类 铸铁的分类方法很多。根据碳存在的形式可分为三种: 1.白口铸铁

4、(简称白口铁) 白口铸铁中的碳主要以渗碳体(Cm)形式存在,断口呈白亮色。其性能硬而脆,切削加工困难。除少数用来制造硬度高、耐磨、不需要加工的零件或表面要求硬度高、耐磨的冷硬铸件外(如破碎机的压板、轧辊、火车轮等 ),还可作为炼钢原料和可锻铸铁的毛坯。 2.灰口铸铁(简称灰口铁) 灰口铸铁中的碳主要以片状石墨的形式存在,断口呈灰色。灰口铸铁具有良好的铸造性能和切削加工性能,且价格低廉,制造方便,因而应用比较广泛。 3.麻口铸铁(简称麻口铁) 麻口铸铁中的碳既以渗碳体形式存在,又以石墨状态存在。断口来杂着白亮的游离渗碳体和暗灰色的石墨,故称为麻口铁。生产中很少用麻口铁。 根据石墨形状的不同,将铸

5、铁分为以下四种: (1)灰口铸铁,铸铁中的石墨形状呈片状。 (2)蠕墨铸钟持铁中的石墨大部分为短小蠕虫状 (3)球墨铸铁(又称玛铁、玛钢),铸铁中的石墨是不规则团絮状。 (4)球墨铸铁:铸铁中的石墨呈球状。 此外,为了获得某些特殊性能,应使铸铁中的常规元素高干规定的含量,并且加入一定的合金元素,此称之为 特殊性能铸铁。例如、耐磨铸铁、耐热铸铁和耐蚀铸铁等。 2 铸铁的结晶 通过金属学的学习我们已经知道,铸铁的结晶过程和组织转变依化学成分和铸造工艺条件不同,可以按Fe-Fe3C系进行或者按Fe-G系进行。研究铸铁时为了方便起见 ,通常将这两种状态图叠加在一起称为Fe-C合金双重状态图,如图所示。

6、 由图可见,亚共晶成分的发口铸铁(简称灰铸铁)结晶时,首先拆出的是初生奥氏体A,以后残留下的液相再经过共晶转变 ,变为固态。共晶转变完毕后继续冷却时,还要发生碳自A中脱港析出那以后的共折转变,完成结晶过程,形成亚共晶铸铁的最终纷纷通常把初生A的析出和以后共晶转变称为铸铁的一次结晶;而把凝固后进行的碳自A中的 脱溶、共析转变称为二次结晶。 一次结晶决定了铸铁的晶粒大小、石墨形状和分布,二次结晶决定了铸铁的基体组织。因此。要控制铸铁的组织,就必须控制这两个结晶过程。 3 铸铁的石墨化 一,铸铁的石墨化过程 铸铁中石墨的形成过程称为石墨化过程。铸铁组织形应的基本过程就是铸铁中石墨的形成过程。因此,了

7、解石墨化过程的条件与影响因素对掌握铸铁材料的组织与性能是十分重要的。 根据FeC合金双重状态图,铸铁的石墨化过程可分为三个阶段: 第一阶段,即液相亚共晶结晶阶段。包括,从过共晶成分的液相中直接结晶出一次石墨和共晶成分的液相结晶出奥氏体加石墨由一次渗碳体和共晶渗碳体在高温退火时分解形成的石墨。 中间阶段,即共晶转变亚共析转变之间阶段。包括从奥氏体中直接析出二次石墨和二次渗碳体在此温度区间分解形成的石墨。 第三阶段,即共折转变阶段。包括共折转变时,形成的共析石墨和共析渗碳体退火时分解形成的石墨。 铸铁石墨化过程进行的程度与铸铁组织的关系概括于表中 二、影响铸铁石墨化的因素 铸铁的组织取决于石墨化进

8、行的程度,为了获得所需要的组织,关键在于控制石墨化进行的程度。实践证明,铸铁化学成分、铸铁结晶的的冷却速度及铁水的过热和静置等诸多因素都影响石墨化和铸铁的显微组织。 1.化学成分的影响 各元素对待铁石墨化的影响可定性地列于表中。 各元素对石墨形状、分布的影响定性地列于表中。 由表可见,恃铁中常见的C,Si、Mn、P、S中,C,Si是强烈促进石墨化的元素,S是强烈阻碍石墨化的元素。实际上各元素对铸铁的石墨化能力的影响极为复杂。其影响与各元素本身的含量以及是否与其它元素发生作用有关 ,如Ti、Zr、B、Ce、Mg等都阻碍石墨化,但若其含量极低(如B、Ce0.01%,T0.08%)时,它们又表现出有

9、促进石墨化的作用。 2.冷却速度的影响 一般来说,铸件冷却速度趋缓慢,就越有利于按照Fe-G稳定系状态图进行结晶与转变,充分进行石墨化;反之则有利于按照 Fe-Fe3C亚稳定系状态图进行结晶与转变,最终获得白口铁。尤其是在共析阶段的石墨化,由于温度较低,冷却速度增大,原子扩散困难,所以通常情况下,共析阶段的石墨化难以充分进行。 铸铁的冷却速度是一个综合的因素,它与浇注温度、造型材料的导热能力以及铸件的壁厚等因素有关。而且通常这些因素对两个阶段的影响基本相同。 提高浇注温度能够延缓铸件的冷却速度,这样既促进了第一阶段的石墨化,也促进了第二阶段的石墨化。因此,提高浇注温度在一定程度上能使石墨粉化

10、,也可增加共析转变。 3.铸铁的过热和高温静置的影响 在一定温度范围内,提高铁水的过热温度,延长高温静置的时间,都会导致铸铁中的石墨基作组织的细化,使铸铁强度提高。进一步提高过热度,铸铁的成核能力下降,因而使石墨形态变差,甚至出现自由渗碳体,使强度反而下降,因而存在一个临界温度。临界温度的高低,主要取决于铁水的化学成分及铸件的冷却速度一般认为普通灰铸铁的临界温度约在1500-1550左右,所以总希望出铁温度高些。 4 灰铸铁 灰铸铁是一种断面是灰色,碳主要以片状石墨形式出现,是应用最为广泛的一种铸铁。灰铸铁的铸造性能、切削性、耐磨性和吸震性都优于其它各类铸铁,而且生产方便、品率高、成本低。因此

11、,在工农业生产中友铸铁获得广泛应用,在各类铸铁的总产量中点80%以上。 一,灰铸铁的牌号、化学成分反显微组织 根据发铸铁分类国家标准 GB 9439一88,我国灰铸铁的牌号分为六级。 “HT”表示灰铁二字汉语拼音的第一个大写字母,其后数字表示抗拉强度。发铸铁的化学成分见表。 灰铸铁的显微组织是由片状石墨和金属基体所组成的。金属基体按共析阶段石墨化进行的程度不同可分为铁素体、铁素体-珠光体作和珠光体三种。相应有三种不同基体组织的灰铸铁 ,它们的显微组织分别如图所示。 普通灰铸铁的金属基体以珠光作为主,并合有少量铁素体;高强度铸铁主要是珠光作基体,属于铁素体基体的主要是高硅铸铁。 二、灰铸铁的性能

12、和用途 灰铸铁的性能与其他学成分和组织有密切的联系。 1.优良的铸造性能 由于灰铸铁的化学成分接近共晶点,所以铁水流动性好,可以铸造非常复杂的零件。另外,由于石墨比容较大,使铸件凝固时的收缩量减少,可简化工艺,减轻铸件的应力并可得到致密的组织。 2,优良的耐磨性和消震性 石墨本身具有润滑作用,石墨掉落后的空洞能吸附和储存润滑油,使铸件有良好的耐磨性。此外,由于铸件中带有硬度很高的磷共晶,又能使抗磨能力进一步提高,这对于制备活塞环、气缸套等受摩擦零件具有重要意义。 石墨可以阻止后动的传播,灰铸铁的消振能力是钢的10倍,常用来制作承受振动的机床底座。 3.较低的缺口敏感性和良好的切削加工性能 灰铸

13、铁中由于石墨的存在,相当于存在很多小的缺口时表面的缺陷、缺口等几乎没有敏感性,因此,表面的缺陷对铸铁的疲劳强度影响较小 ,但其疲劳强度比钢要低。由于灰铸铁中的石墨可以起断屑作用和对刀具的润滑起减障作用,所以其可切削加工性是优良的。 4.灰铸铁的机械性能 灰铸铁的抗拉强度、塑性、韧性及弹性模量都低于碳素锈钢,如表所示。灰铸铁的抗压强度和硬度主要取决于基体组织。灰铸铁的抗压强度一般比抗拉强度高出三四倍 ,这是灰铸铁的一种特性。因此,与其把灰铸铁用作抗拉零件还不如做耐压零件更适合。这就是广泛用作机床床身和支柱受耐压零件的原因。 5 提高铸铁性能的途径 一、铸铁石墨细伦强化-孕育处理 为了细化灰铸铁的

14、组织,提高铸铁的机械性能,并使其均匀一致。通常在浇注前往铁水中加和少量强烈促进石墨化的物质 ,即孕育剂)进行处理,这一处理过程称为孕育处理。经过孕育处理的灰铸铁称孕育铸铁。 常用的孕育剂有硅铁、硅钙、稀土合金等,其中最常用的是含有75%Si的铁合金。孕育剂的加入量大致在0.2%0.5%,应视铸件厚薄而定。孕育剂的作用是促使石墨自发形核 ,因而孕育铸铁的金相组织是在细密的珠光体基体上,均匀分布细小的石墨,其抗拉强度可达300-400 MPa,硬度可达HB170-270,k可达38 Jcm2、延伸率达0.5%左右 ,都比普通灰铸铁高。 二、铸铁的石墨球化强化-球化处理 1.球墨铸铁的生产 石墨呈球

15、状的铸铁称为球墨铸铁,简称球铁。球铁是用灰口成分的铁水经球化处理和孕育处理两制得的。 2、球铁的组织和性能特点 球墨铸铁中的石墨呈球状,它对基体的破坏作用小,基体强度利用率可达70%90%。另外。球铁可通过热处理充分发挥基体的性能潜力,所以球铁具有较好的机械性能。抗拉强度最高可达150x107N/m2,延伸率可达25%。另外,它的屈强比 很高,k可达8-15Jcm2。 3.球墨铸铁的牌号,化学成分和用途 根据国家标准 GB34888规定,球铁分为八个牌号,牌号中“QT”是球铁二字汉语拼音的字头,其后二级数字分别表示最低抗拉强度和最低延伸率。表 中列出了球铁的化学成分和力学性能。 球铁具有上述优

16、异的机械性能、有时可用它代替碳素钢,应用于负荷较大受为复杂的零件如珠光体基的球铁常用于制造汽车、拖拉机中的曲轴、连杆、凸轮等。还可做大型水压机的工作缸、缸套及活塞。而铁素作基的球铁多用于制造受压阀门、汽车后桥壳等。 6 可锻铸铁 它是由白口铸件经热处理而得的一种高强度铸化与灰铸铁相比,它具有较高的强度、塑性、韧性,而耐磨性和城探性优于普通碳素钢,所以可部分代替碳钢、合金钢和有色金属。 7 特殊性能铸铁 在普通铸钟基础上加入某些合金元素可使铸铁具有某种特殊性能,如耐磨性、耐热性或腐蚀性等,从而形成一类具有特殊性能的合金铸铁。合金铸铁可用来制造在高温、高 磨擦或耐蚀条件下工作的机器零件。 一、耐磨

17、铸铁 根据工作条件的不同,耐磨铸铁可以分为减摩铸铁和抗磨铸铁两类。减磨铸铁用于制造在润滑条件工作的零件,如机床床身、导轨和汽缸套等。这些零件要求较小的摩擦系数。抗磨 铸铁用来制造在于摩擦条件下工作的零件,如轧辊、球磨机磨球等。 二、耐热铸铁 铸铁在高温条件下工作、通常会产生氧化和生长等现象。氧凡是指铸铁在高温下受氧化性气氛的侵蚀,在铸件表面发生的化学腐蚀的现象。由于表面形成氧化皮,减少了铸件的有效断面,因而降低了铸件的承载能力。生长是指铸铁在高温下反复加热冷却时发生的不可塑的体积长大,造成零件尺寸增大,并使机械性能降低。铸件在高温和负荷作用了,由于氧化和生长最终导致零件变形、翘曲、产生裂纹,甚

18、至破裂。所以铸铁在高温下抵抗破坏的能力通常指铸铁的抗氧化性和抗生长能力。耐热铸铁是指在高温条件下具有一定的抗氧化和抗生长性能,并能承受一定载荷的待钱。 三,耐蚀铸铁 普通铸铁的耐蚀性是很差的,这是因为铸铁本身是一种多相合金,在电解质中各相具有不同的电极电位,其中以石墨的电极电位最高,渗碳体次之,铁素体最低。电位高的相是阴极,电位低的相是阳极,这样就形成了一个微电池,于是作阳极的铁素作不断被消耗掉,一直深入到铸铁内部。 提高铸铁的耐蚀性的手段主要是加入人合金元素以得到有利的组织和形成良好的保护膜。铸铁的基作组织最好是致密、均匀的单相组织、即A或F。中等大小又不相互连贯的石墨对耐蚀性有利。至于石墨

19、的形状,则以球状或团絮状为有利。 8 铸铁的热处理 铸铁生产除适当地选择优学成分以得到定的组织外,热处理也是进一步调整和改进基体组织以提高铸铁性能的一种重要途径。铸铁的热处理和钢的热处埋有相同之处 ,也有不同之处。铸铁的热处理一般不能改善原始组织中石墨的形态和分布状况。对灰口铸铁来说,由于片状石墨所引起的应力集中效应是对铸铁性能起主导作用的困素,因此对灰口铸铁施以热处理的强化效果远不如钢和球铁那样显著。故友口铸铁热处理工艺主要为退火、正火等。对于球铁来说,由于石墨呈球状,对基体的割裂作用大大减轻,通过热处理可使基作组织充分发挥作用,从而可以显著改善球性的机械性能。 故球铁像钢一样,其热处理工艺

20、有退火、正火、调质、多温淬火、感应加热淬火和表面化学热处理等。 铸铁的热处理工艺: 1.消除应力退火 由于铸件壁厚不均匀,在加热,冷却及相变过程中,会产生效应力和组织应力。另外大型零件在机加工之后其内部也易残存应力,所有这些内应力都必须消除。去应力退火通常的加热温度为500550保温时间为28h,然后炉冷(灰口铁)或空冷(球铁)。采用这种工艺可消除 铸件内应力的9095%,但铸铁组织不发生变化。若温度超过550或保温时间过长,反而会引起石墨化,使铸件强度和硬度降低。 2.消除铸件白口的高温石墨化退火 铸件冷却时,表层及薄截面处,往往产生白口。白口组织硬而脆、加工性能差、易剥落。因此必须采用退火

21、(或正火)的方法消除白口组织。退火工艺为:加热到550950保温25 h,随后炉冷到500-550再出炉空冷。在高温保温期间 ,游高渗碳体和共晶渗碳体分解为石墨和A,在随后护冷过程中二次渗碳体和共析渗碳体也分解,发生石墨化过程。由于渗碳体的分解,导致硬度下降,从而提高了切削加工性。 3.球铁的正火 球铁正火的目的是为了获得珠光体基体组织,并细化晶粒,均匀组织,以提高铸件的机械性能。有时正火也是球铁表面淬火在组织上的准备、正 火分高温正火和低温正火。高温正火温度一般不超过950980,低温正火一般加热到共折温度区间820860。正火之后一般还需进行四人处理,以消除正火时产生的内应力。 4.球铁的

22、淬火及回火 为了提高球铁的机械性能,一般铸件加热到Afc1以上3050(Afc1代表加热时A形成终了温度),保温后淬入油中,得到马氏体组织。为了适当降低淬火后的残余应力,一般淬火后应进行回火,低温回火组织为回火马氏作加残留贝氏体再加球状石墨。这种组织耐磨性好 ,用于要求高耐磨性,高强度的零件。中温回火温度为350-500回火后组织为回火屈氏体加球状石墨,适用于要求耐磨性好、具有一定效稳定性和弹性的厚件。高温 回火温度为500-60D,回火后组织为回火索氏作加球状石墨,具有韧性和强度结合良好的综合性能,因此在生产中广泛应用。 5.球铁的多温淬火 球铁经等温淬火后可以获得高强度,同时兼有较好的塑性

23、和韧性。多温淬火加热温度的选择主要考虑使原始组织全部A化、不残留F,同时也避免A晶粒长大。加热温度一般采用Afc1以上3050,等温处理温度为0350以保证获得具有综合机械性能的下贝氏体组织。稀土镁铝球铁等 温淬火后b=12001400MPa,k=33.6Jcm2,HRC4751。但应注意等温淬火后再加一道回火工序。 6.表面淬火 为了提高某些铸件的表面硬度、耐磨性及疲劳强度,可采用表面淬火。灰铸铁及球铁铸件均可进行表面淬火。一般采用高(中) 频感应加热表面淬火和电接触表面淬火。 7.化学热处理 对于要求表面耐磨或抗氧化、耐腐蚀的铸件,可以采用类似于钢的化学热处理工艺,如气体软氯化、氯化、渗硼

24、、渗硫等处理。.精品文档.中小型乘用车发动机灰铸铁汽缸体常见缺陷与对策现代铸铁概述 改革开放后近十年来,我国的汽车制造工业得到了飞速发展,许多高端汽车品牌,几乎与发达国家同步推出面世,与之相适应的汽车发动机制造业也得到了迅猛发展,其中发动机铸造的水平也得到了极大的提高,无论铸件产量还是铸件技术要求及铸件质量,都基本上满足了现代汽车发动机日益提高的要求。 以中小型乘用车发动机主要铸件汽缸体(汽缸盖)生产为例,众多汽车发动机铸造企业都采用了粘土砂高压造型(少数为自硬树脂砂造型),制芯则普遍采用覆膜砂热芯或冷芯工艺,而在熔炼方面大都采用双联熔炼或电炉熔炼,所生产的发动机均为高强度薄壁铸铁件。许多厂家

25、为满足高强度薄壁铸件的工艺要求,纷纷引进先进的工艺技术装备,如高效混砂机、高压造型线、高度自动化的制芯中心、强力抛丸设备,大多采用整体浸涂、烘干,并且自动下芯。在过程质量控制方面,许多企业实现了在线检测与控制,如配备了型砂性能在线检测、热分析法铁水质量检测与判断装置、真空直读光谱仪快速检测。清洁度检查的工业内窥镜等。相当一部分企业还在产品开发方面应用了计算机模拟技术。可以毫不夸张的说,就硬件配置而言,我国发动机铸造水平丝毫不亚于当今世界工业发达国家,一句话,具备了现代铸造生产条件。(为叙述方便,以下称上述框架内容的生产条件为现代生产条件。) 然而,应该承认,在发动机铸造企业的经济效益与产品质量

26、以及铸件所能达到的技术要求方面,我们与世界发达国家还有较大的差距。 提高产品质量,减少废品损失,是缩小与发达国家差距、发挥引进设备效能、提高企业效益的重要途径。本文试图就我国铸造企业在现代铸造条件下,中小型乘用车发动机灰铸铁汽缸体(汽缸盖)铸件生产中常见的铸造缺陷与对策,与广大业界同仁作一交流。 1 气孔 气孔通常是汽缸体铸件最常见的缺陷,往往占铸件废品的首位。如何防止气孔,是铸造工作者一个永久的课题。 汽缸体的气孔多见于上型面的水套区域对应的外表面(含缸盖面周边),例如出气针底部(这时冒起的气针较短)或凸起的筋条部,以及缸筒加工后的内表面。严重时由于型芯的发气量大而又未能充分排气,使上型面产

27、生呛火现象,导致大面积孔洞与无规律的砂眼。 在现代生产条件下,反应性气孔与析出性气孔较为少见,较为多见的是侵入性气孔。现对侵人性气孔分析出如下: 1.1 原因 1.1.1 型腔排气不充分,排气系统总截面积偏小。 1.1.2 浇注温度较低。 1.1.3 浇注速度太慢;,铁液充型不平稳,有气体卷入。 1.1.4 型砂水份偏高;型砂内灰份含量高,型砂透气性差; 1.1.5 对于干式气缸套结构的发动机,水套砂芯工艺不当(如未设置排气系统或排气系统不完善;或因密封不严,使浇注时铁水钻人排气通道而堵死排气道;砂芯砂粒偏细,透气不良;上涂料后未充分干燥;砂芯砂与涂料发气量太大,或发气速度不当;涂料的屏蔽性差

28、.)。经验证明,干式缸套的缸体的气孔缺陷,很大程度上与水套工艺因素相关联。 1.1.6 孕育剂未经干燥且粒度不当;铁液未充分除渣,浇注时未挡渣,由此引起渣气孔。 1.1.7 浇注时未及时引火 1.2对策 1.2.1 模型上较高部位设置数量足够、截面恰当的出气针或排气片;而芯头部位设置排气空腔。上述排气系统均应将气体引至型外。通常排气截面应为内浇道总截面积1.51.8倍左右。 1.2.2 浇注系统按半开放半封闭原则设置为宜,且须具有一定的拦渣功能,这样铁液充型时比较平稳,不会冲击铸型或产生飞溅或卷人气体。而浇注系统的截面大小以8-lOkgs的浇注速度来计算较为适宜。 1.2.3 铁液的熔炼温度应

29、不低于1500,而手工浇注时末箱的浇注温度应控制在1400C左右(视铸件大小与壁厚可适当调整)。最好能采用自动浇注,浇注温度误差应在20以内。 1.2.4 一个好的适于高压造型的砂处理系统,型砂水分应控制在2.8-3.2,其时的紧实率应在36-42之间,而温压强度应达180-220kpa(均指在造型机处取样检测)。为达这些指标,需监控型砂的灰份,辅助材料的添加量,合适的原砂粒度、循环砂的温度及混砂效率。 1.2.5 注意做好铁液去渣,浇注时挡渣引火以及孕育剂的干燥等工作。 1.2.6 对于干式汽缸套结构的发动机缸体,至关重要的是要有非常完善到位的水套砂芯工艺: a、水套坭芯用砂的平均细度较之其

30、他砂芯要粗一些,以求有良好的透气性。 b、设置充分的互相连通的排气孔网并使之能排出型外,这些孔网尽可能在制芯时生成,亦可在成型后钻加工形成。对于前者要定期监控检查孔网是否畅通(当心部芯砂固化不良时易将孔网堵塞)。 c、对砂芯砂性能要综合考虑,不能片面追求强度。当强度太高时,势必要增大树脂用量,从而使芯砂发气量太高;而当水套芯的结构比较复杂纤薄砂厚不均匀,且又能开出排气孔网时,就要求砂芯有较高的强度,即使发气量大些也无妨。 d、当水套芯有排气孔网时,涂料要有较好的屏蔽性;当水套芯截面不便设置排气孔网时,涂料要有较好的透气性,这时砂的粒度也应更粗些。 e、当水套芯布有排气孔网,且使用屏蔽性涂料时,

31、在浸涂时要防止涂料液进入排气孔网,更要注意封火措施(可使用封火垫片材料),以免浇注时铁水进人排气孔网,把排气道堵死; f、涂料的发气量要低,且施涂后一定要充分干燥。 一个成熟的水套芯工艺,可以将缸筒加工后内表面的气孔废品率控制在3o,甚至更低。与缸体水套芯相类似,对缸体的油道芯、挺杆腔砂芯以及缸盖的水套芯,其工艺方法、工艺措施也可仿照缸体水套芯的工艺思路来考虑。 2 砂眼 砂眼也是汽缸体(汽缸盖)铸件的常见缺陷,多见于铸件的上型面,也有在缸筒内表面经加工后暴露出来的。 2.1原因 2.1.1 浇注系统设计不合理。 2.1.2 型砂系统管理不善,型砂性能欠佳。 2.1.3 型腔不洁净。 2.1.

32、4 砂芯表面状况不良或是施涂与干燥不当。 2.2 对策 2.2.1 就浇注系统设置方面来说,为避免或减少砂眼缺陷,应注意以下事项: a、要有合理的浇注速度。截面太小,则浇注速度太慢,铁液上升速度太慢,上型受铁液高温烘烤时间长,容易使型砂爆裂,严重时会成片状脱落。浇注系统的比例,应使铁液能平稳注人,不得形成紊流或喷射。 b、尽量使铁液流经的整个通道在砂芯内生成,通常坭芯砂(热法覆膜砂或冷芯砂)较之外模粘土砂更耐高温铁液冲刷。而直浇道难以避免设置在外模的粘土砂砂型中通过,这时可在直浇口与横浇口搭接处设置过滤器(最好是泡沫陶瓷质),可以将铁液在直浇道内可能冲刷下来的散砂和铁液夹渣加以过滤,从而可减少

33、砂眼和渣眼。 c、浇道是变截面的,因此变截面处应尽可能圆滑光洁,避免形成易被铁液冲垮的尖角砂。 d、浇道的截面比例宜采用半封闭半开放型式,以降低铁液进入型腔时的流速与冲击,而内浇道位置应尽可能避免直接冲击型壁和型芯,且呈扩张形为好。 2.2.2 为防止铸件的砂眼缺陷,型砂方面的主要措施是: a、是控制型砂中的微粉含量。型砂在反复使用中,微粉含量会越来越高,这会降低型砂的湿压强度,水分及紧实率则会提高,使型砂发脆。 b、浇注时砂芯溃散后混入旧砂,未燃尽的残留树脂膜,会使型砂的韧性变差,产生砂眼的可能性也增大。为此需要改善型砂的表面稳定性,降低脆性、提高韧性,方法是在型砂中添加适当的旷淀粉,也有的

34、改用FS粉,均可取得良好的效果,也可以在型腔表面施表面安定剂(喷洒)。 2.2.3 在造型、翻箱,特别是下芯、合箱等各环节容易将砂粒掉人型腔,而又未能清理干净,极易造成铸件砂眼缺陷。为此,一是要选取恰当的芯头间隙和斜度并保证下芯和合箱的工装精度,以免碰坏砂型或损坏型芯而将砂粒散落在型腔内;二是合箱前清理干净型内可能掉人的砂粒(抽吸法好于吹出法)。 2.2.4 不能忽视的是,砂芯的飞边毛刺要清理干净,上涂烘干后待用的砂芯表面的砂粒灰尘也要吹净,否则容易被铁水冲刷并富集在铸件某处形成砂眼。同时,需要强调的是,砂芯上涂不能太厚,尤其是当工艺要求个别砂芯的个别部位或全部两次浸渗涂料时,涂料不能太厚,且

35、须等第一次上涂干燥到一定程度后才能上涂第二层,否则浇注时过厚的涂料会爆裂而形成夹砂(渣)。 3脉纹(飞翅) 通常在铸件的内表面或热节部位,如缸体缸盖的水套腔内,或是进排气道内,由于浇注时高温铁液的作用,使砂芯硅砂发生相变膨胀引起砂芯表面产生裂缝,液体金属渗入其中,从而导致铸件形成飞翅状凸起的缺陷,即“脉纹”。脉纹一旦出现,难以清理。当水套腔内有脉纹时,轻者会影响内腔的清洁度,重者会影响冷却水的流量,从而降低对发动机的冷却效果,甚至会引起“烧缸”、“拉缸”严重后果;当气道内出现脉纹时,会影响气道涡流特性,最终影响发动机的整机工作性能。 生产实践表明,冷芯工艺产生脉纹的倾向要稍大于壳芯产生脉纹的倾

36、向。 3.1原因 3.1.1如上所述,产生脉纹的根本原因是高温铁液作用于砂芯引起硅砂的膨胀裂纹。 3.1.2砂芯材料不具备低膨胀的性能,或者其自身不能吸收这种受热产生的膨胀。 3.1.3砂芯的韧性或高温强度不足以克服膨胀应力导致产生裂纹。 3.1.4所用涂料不能抵御砂芯在高温下产生膨胀裂纹。 3.1.5铁液未能在砂芯产生裂纹前凝固结壳,从而预防脉纹产生。 3.2 对策 针对3.1所列产生脉纹的原因(或者说脉纹形成的机理),显然应采取如下措施: 3.2.1 在保证能得到健全铸件而又不产生气孔等缺陷的铁液充型温度下,尽可能采取较低的浇注温度以减轻砂芯受热膨胀的程度;同时采用较快的浇注速度,以避免砂

37、芯长时间受到高温烘烤可能产生的膨胀裂纹。 3.2.2 用于易产生脉纹砂芯(如水套芯、进排气道芯)的芯砂原砂预先进行消除相变膨胀处理,或者在砂芯材料中添加一些辅助材料,降低砂芯材料的热膨胀率;再就是原砂的颗粒组成以三筛或四筛级配,以求砂芯材料能自身吸收膨胀变形。 3.2.3 必要时,在砂芯材料中使用一定比例的非石英系列砂(如橄榄石砂、锆英砂等),第一它们的膨胀率极小,第二其导热性好,使铁液结壳时间早于砂芯相变膨胀开裂时间。 3.2.4 提高砂芯材料的韧性和高温强度。 3.2.5 使用强度、韧性优良,且导热性能好的烧结型涂料,以增强砂芯表面抗膨胀裂纹的能力。 以上这些措施既适用于冷芯砂,也适用于热

38、法覆膜砂(壳型砂)。由此看出,预防或减少脉纹缺陷的主要措施是改善砂芯膨胀性能。 4 清洁度 现代发动机对清洁度的要求十分苛刻。对汽缸体(汽缸盖)铸件而言,水腔、油腔、挺杆室等部位允许残留的砂粒和异物,仅限为数克(g)以内。许多企业尽管采取了二次抛丸、强力抛丸,甚至引进了先进的抛丸设备,如鼠笼或机械手抛丸,要完全达到内腔清洁度要求,仍然较为困难,无论是壳芯或冷芯,情形均一样。 4.1 原因 清洁度达不到要求,从根本上来说是由于铸件结构方面的原因,上述各腔在抛丸时,因为出砂孔眼少而小;铁丸所能投射进去的量有限,所以内腔的光洁度与清洁程度均不及铸件的外表面,也不及曲轴箱和缸筒面等部位。在不能改变铸件

39、结构的情况下,只能查找影响清洁度其他方面的原因。 4.1.1 砂芯表面状况不良,如充填不紧实;砂芯表面粗糙;粘模等。 4.1.2 施涂不当,如涂料性能差,玻美度不合适,涂层厚度不够等。 4.1.3 现有强力抛丸装置对铸件大部分内外表面都能清理得很干净,但对狭窄复杂的水腔、油腔仍显不足。 4.2 对策 4.2.1 改善和提高砂芯表面质量状况,如选用流动性好的制芯材料(安息角d9e);合理设置排气塞并加以维护使其畅通;施用品质好的脱模剂防止粘模等,这些措施的目的是得到表面紧实致密的砂芯。 4.2.2 通常都要对坭芯施以涂料层。涂料玻美度要合适;涂料要有较强的渗透性;涂料层要有一定厚度(一般要达0.

40、2mm),涂层干燥后不能显见砂粒为宜;选用的涂料防粘砂性能优良,在浇注温度下能在铸件表面形成一低熔点的烧结层,而且在铸件冷却过程中因收缩率的不同能自动剥离下来。 4.2.3 如3.0所述,要努力避免防止脉纹缺陷的产生。一旦出现脉纹,铸件的内腔清洁度情况,就更加恶化。有关措施参见3.2。 4.2.4 对铸件内腔清理,国内外的主流工艺方法是采用强力机械抛丸的方式,其型式有鼠笼抛丸,机械手夹持抛丸等。对这类抛丸设备,要维护达到额定抛丸电流值,要调整最佳抛射角度,对后一种抛丸型式,还可对难以清理的内腔将程序设置在最佳人射角度时适当延长抛射时间。 此外,还有以下几种改善和提高内腔清洁度的手段: a、电液

41、压清理,其原理是将待清理铸件置于水池中,在高能量放电过程中,所产生的高压冲击波将粘附在铸件上的砂粒振击脱落。理论上说水能浸入的孔腔内,其粘砂均能清理干净,但这种方法占地面积大、耗能高、流程长(尚要倒空内腔积水并烘干水迹)、维护量大,也有一定的安全问题。 b、先将铸件置于炉内焙烧,再进行抛丸。这种方法提高铸件清洁度的效果还是很明显的,但同样是能耗较高、周期长,如以煤炭作加热炉燃料,则作业环境较差。 c、有的厂家除采用强力抛丸以外,还针对水道腔或油道腔进行喷丸清理。这种方法对提高内腔清洁度最有效,所能达到的清洁度水平最高,但目前仅有此类通用单机产品,尚需人工握持喷丸头伸进密封的工作室对准有关出砂孔

42、喷射,劳动强度大、环境恶劣。期待着专用的自动喷丸设备在汽缸体(汽缸盖)清理生产线上应用。 5 渗漏 渗漏是指汽缸体(汽缸盖)在压力试验(水压气压)时的泄漏现象,多发生在汽缸体(或汽缸盖)的水套腔或是油道腔。 引起渗漏的原因有夹杂和疏松两大类(机械损伤或铸造裂纹引起的曲轴箱渗漏的情况极少,在此不加论述)。 5.1 夹杂引起的渗漏 5.1.1 原因 (1)砂芯在修芯时未清除飞边、毛刺,或砂芯上有松散粘附的大小不一的砂粒、砂团未清除干净,致使浇注时被铁液冲刷下来并飘浮富集在水套壁或油道壁,形成夹砂(砂眼),使腔壁贯通渗漏。 (2)组合好的砂芯被粉尘砂粒污染或型腔内不慎掉人散砂,没有清理干净,也会形成

43、砂眼使腔壁贯通而渗漏。 (3)铁液不纯净,而浇道内又无过滤措施或拦渣效果差,使铁液中的夹渣进入型腔,使水腔或油腔的腔壁形成贯通性的渣孔而渗漏。 5.1.2 对策 (1)认真清除砂芯的飞边毛刺,并清除坭芯上附着的砂粒砂团,避免在水腔油腔壁上可能形成的砂眼。 (2)吹净砂粒与粉尘污染的组合好的砂芯组,清理掉入型腔的砂粒。 (3)直浇道设置高效的过滤器,横浇道应有良好的拦渣功能,并做好铁液净化工作(造渣、除渣),以防腔壁上产生渣眼。 5.2 缩松引起的渗漏 这种渗漏常发生在水腔(油腔)或喷油嘴等热节部位。 5.2.1 原因 (1)铁液成分不恰当,SiC过高,石墨片粗大,组织疏松。 (2)孕育过量,致

44、使共晶团数量过多,微晶间隙难以补缩致密。 5.2.2 对策 (1)在规定的碳当量保持不变的前提下,限制SiC在0.50.6之间。 (2)不得孕育过量,较有效的措施是采用SiSr(含锶)孕育剂,其石墨化能力极强,用量仅FeSi孕育剂的50,既可充分孕育消除截面敏感性,又可避免产生过多数量的共晶团。 (3)在易产生缩松的热节部位,局部刷碲粉醇基涂料,增加该部位的冷却能力,防止产生缩松。有报道称,含Pb量达0.0008,即可造成缩松渗漏,须注意使用的炉料中有否镀Pb材料,或须先行除去镀层。此外影响缩松渗漏的微量元素还有Ti、A1等,它们都会增加铁液的收缩倾向,要严格控制。 6 材质性能方面的缺陷 纵

45、观国内外发动机技术发展趋势;都在追求减薄铸件壁厚,从而减轻铸件乃至整机重量,达到降低油耗的目的。目前发动机单位功率的缸体缸盖重量达到1.8kgkw左右,相应的铸件主要壁厚仅3.5mm左右,这就对铸件的材质性能提出了很高要求。概括起来说,主要为: a、干型单铸试棒的抗拉强度b250MPa,指定本体部位的抗拉强度b200MPa; b、铸件指定部位的硬度在180HB以上,铸件厚薄断面的硬度差在30HB以下; c、铸件本体的主要部位珠光体含量在90以上,石墨形态应大部分为A型,允许表面有少量B、D型,石墨最大长度应在2501xm以下。尽管我国大多数专业发动机铸件生产厂家,通过技术改造和技术引进,达到了

46、现代生产条件,但也经常出现达不到上述材质要求方面的缺陷。 6.1原因 6.1.1 铁液熔炼温度偏低,过冷度小,使得后续的孕育强化效果差。 6.1.2 炉料(金属炉料与非金属炉料)质量差,微量元素及非金属夹杂物含量高。 6.1.3 合金化措施不当(或合金元素选择不当,或合金加入量不当,或合金化方法不当)。 6.1.4 孕育措施不当(孕育剂成分、孕育剂形态、孕育量、孕育方法等)。 6.1.5 在保温炉内处置不当(如频繁且大幅度调整化学成分,使铁液在炉内保温时间过长,元素变化大),成分控制精度差。 6.2 对策 6.2.1 提高熔炼温度以提高铁液的稳定性,增加其过冷倾向,消除原材料的“遗传性”;并保

47、证出铁温度大于1480,以确保初始浇注温度达到1450,而终了浇注温度达1400。 6.2.2 加强冲天炉控制,使之炉况稳定,从而保证进入保温电炉的铁液成分稳定(减少成份烧损的波动)。这样可减少电炉内成分调整所需的时间,以免增加铁液的收缩倾向和白口倾向。 6.2.3 保温电炉内不得已需要增C操作时,一要选择吸收率高的增碳剂,二要保证有充分电磁搅拌和充分吸收的时间,否则所取铁水样不能反应整个熔体真实含C量,导致实际碳当量发生偏差。 6.2.4 减少碳当量的波动,提高成份控制精度,要求求GE0.05,ASi0.1。 6.2.5 对于形状复杂、薄壁高强度的缸体、缸盖类铸件的铁液,既要有高强度,也要有良好的铸造性能。为此通常其成份设计为高碳当量(3.9-4,1),使其具有良好的铸造性能,而为了达到较高的力学性能,则采用低合金化措施。 a、根据我国资源情况以及多数企业的经验与习惯,多采用Cr、Cu等合金元素,有利于增加并细化和稳定珠光体,改善石墨形态,从而得到较高的力学性能。 b、合金的加入量必须加以控制。Cr是一种促进形成并稳定珠光体的元素,且能细化珠光体,因而能显著提高灰铸铁的强度;然而Cr与C又有较强的亲和力,是一种强碳

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com