材料力学_习题集(含答案).doc

上传人:豆**** 文档编号:17614480 上传时间:2022-05-25 格式:DOC 页数:22 大小:408.50KB
返回 下载 相关 举报
材料力学_习题集(含答案).doc_第1页
第1页 / 共22页
材料力学_习题集(含答案).doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《材料力学_习题集(含答案).doc》由会员分享,可在线阅读,更多相关《材料力学_习题集(含答案).doc(22页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流材料力学_习题集(含答案).精品文档.材料力学课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程材料力学(编号为06001)共有单选题,计算题,判断题,作图题等多种试题类型,其中,本习题集中有判断题等试题类型未进入。一、单选题1. 构件的强度、刚度和稳定性_。(A)只与材料的力学性质有关 (B)只与构件的形状尺寸有关(C)与二者都有关 (D)与二者都无关2. 一直拉杆如图所示,在P力作用下 。(A) 横截面a上的轴力最大(B) 横截面b上的轴力最大(C) 横截面c上的轴力最大(D) 三个截面上的轴力一样大3. 在杆件的某一

2、截面上,各点的剪应力 。(A)大小一定相等(B)方向一定平行(C)均作用在同一平面内(D)定为零4. 在下列杆件中,图 所示杆是轴向拉伸杆。 (A) (B) P(C) (D)5. 图示拉杆承受轴向拉力P的作用,斜截面m-m的面积为A,则=P/A为 。(A)横截面上的正应力(B)斜截面上的剪应力(C)斜截面上的正应力(D)斜截面上的应力6. 解除外力后,消失的变形和遗留的变形 。(A)分别称为弹性变形、塑性变形(B)通称为塑性变形(C)分别称为塑性变形、弹性变形(D)通称为弹性变形7. 一圆截面轴向拉、压杆若其直径增加倍,则抗拉 。(A)强度和刚度分别是原来的2倍、4倍(B)强度和刚度分别是原来

3、的4倍、2倍(C)强度和刚度均是原来的2倍(D)强度和刚度均是原来的4倍8. 图中接头处的挤压面积等于 。P(A)ab(B)cb(C)lb(D)lc9. 微单元体的受力状态如下图所示,已知上下两面的剪应力为则左右侧面上的剪应力为 。(A)/2(B)(C)2(D)010. 下图是矩形截面,则mm线以上部分和以下部分对形心轴的两个静矩的 。(A)绝对值相等,正负号相同(B)绝对值相等,正负号不同(C)绝对值不等,正负号相同(D)绝对值不等,正负号不同11. 平面弯曲变形的特征是 。(A)弯曲时横截面仍保持为平面(B)弯曲载荷均作用在同平面内;(C)弯曲变形后的轴线是一条平面曲线(D)弯曲变形后的轴

4、线与载荷作用面同在个平面内12. 图示悬臂梁的AC段上,各个截面上的 。(A)剪力相同,弯矩不同(B)剪力不同,弯矩相同(C)剪力和弯矩均相同(D)剪力和弯矩均不同13. 当横向力作用于杆件的纵向对称面内时,关于杆件横截面上的内力与应力有以下四个结论。其中 是错误的。(A)若有弯矩M,则必有正应力(B)若有正应力,则必有弯矩M(C)若有弯矩M,则必有剪应力(D)若有剪力G,则必有剪应力14. 矩形截面梁,若截面高度和宽度都增加1倍,则其强度将提高到原来的 倍。(A)2(B)4(C)8(D)1615. 等截面直梁在弯曲变形时,挠曲线曲率在最大 处一定最大。(A)挠度(B)转角(C)剪力(D)弯矩

5、16. 均匀性假设认为,材料内部各点的 是相同的。(A)应力(B)应变(C)位移(D)力学性质17. 用截面法只能确定 杆横截面上的内力。(A)等直(B)弹性(C)静定(D)基本变形18. 在下列说法中 是错误的。(A)位移可分为线位移和角位移(B)质点的位移包括线位移和角位移(C)质点只能发生线位移,不存在角位移(D)个线(面)元素可能同时发生线位移和角位移19. 图示杆沿其轴线作用着三个集中力其中mm截面上的轴力为 。(A)N-5P(B) N-2P(C) N-7P(D) N-P20. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 。(A)分别是横截面、45o斜截面(B)都是横截面(C)分

6、别是45o斜截面,横截面(D) 都是45o斜截面21. 某材料从开始受力到最终断开的完整应力应变曲线如图所示,该材料的变形过程无 。(A)弹性阶段和屈服阶段(B)强化阶段和颈缩阶段(C)屈服阶段和强化阶段(D)屈服阶段和颈缩阶段22. 图示杆件受到大小相等的四个方向力的作用。其中 段的变形为零。 (A)AB(B)AC(C)AD(D)BC23. 在连接件剪切强度的实用计算中,剪切许用应力是由 得到的。(A)精确计算(B)拉伸试验(C)剪切试验(D)扭转试验24. 剪切虎克定律的表达式是 。(A)E(B)g(C)G(D)G/A25. 在平面图形的几何性质中, 的值可正、可负、也可为零(A)静矩和惯

7、性矩(B)极惯性矩和惯性矩(C)惯性矩和惯性积(D)静矩和惯性积26. 图示梁(c为中间铰)是 。(A)静定梁(B)外伸梁(C)悬臂梁(D)简支梁27. 图示两悬臂梁和简支梁的长度相等,则它们的 。(A)Q图相同,M图不同(B)Q图不同,M图相同(C)Q、M图都相同(D)Q、M图都不同28. 在下列四种情况中, 称为纯弯曲。(A)载荷作用在梁的纵向对称面内(B)载荷仅有集中力偶,无集中力和分布载荷(C)梁只发生弯曲,不发生扭转和拉压变形(D)梁的各个截面上均无剪力,且弯矩为常量29. 下列四种截面梁,材料和假截面面积相等从强度观点考虑,图 所示截面梁在铅直面内所能够承担的最大弯矩最大。30.

8、在下面这些关于梁的弯矩与变形间关系的说法中, 是正确的。(A)弯矩为正的截面转角为正(B)弯矩最大的截面挠度最大(C)弯矩突变的截面转角也有突变(D)弯矩为零的截面曲率必为零31. 各向同性假设认为,材料沿各个方向具有相同的 。(A)力学性质(B)外力(C)变形(D)位移32. 用截面法确定某截面的内力时,是对 建立平衡方程的。(A)该截面左段(B)该截面右段(C)该截面左段或右段(D)整个杆33. 图示受扭圆轴上,点AB段 。(A)有变形,无位移(B)有位移,无变形(C)既有变形,又有位移(D)既无变形,也无位移34. 一等直杆的横截面形状为任意三角形,当轴力作用线通过该三角形的 时其横截面

9、上的正应力均匀分布。(A)垂心(B)重心(C)内切圆心(D)外切圆心35. 设轴向拉伸杆横截面上的正应力为,则450斜截面上的正应力和剪应力 。(A)分别为2和(B)均为(C)分别为和2(D)均为/236. 关于铸铁力学性能有以下两个结论:抗剪能力比抗拉能力差;压缩强度比拉伸强度高。其中 。(A)正确,不正确(B) 正确,不正确(C)、都正确(D) 、都不正确37. 直杆的两端固定,如图所示当温度发生变化时,杆 。(A)横截面上的正应力为零,轴向应变不为零(B)横截面上的正应力和轴向应变均不为零(C)横截面上的正应力不为零,轴向应变为零(D)横截面上的正应力和轴向应变均为零38. 在以下四个单

10、元体的应力状态中, 是正确的纯剪切状态。39. 根据圆轴扭转的平面假设可以认为圆轴扭转时其横截面 。(A)形状尺寸不变,直径仍为直线(B)形状尺寸改变,直径仍为直线(C)形状尺寸不变,直径不保持直线(D)形状尺寸改变,直径不保持直线40. 若截面图形有对称轴,则该图形对其对称铀的 。(A)静矩为零,惯性矩不为零(B)静矩不为零,惯性矩为零(C)静矩和惯性矩均为零(D)静矩和惯性矩均不为零41. 图示四种情况中,截面上弯矩值为正,剪力Q为负的是 。42. 梁在集中力作用的截面处 。(A)Q图有突变,M图光滑连续(B)Q图有突变,M图连续但不光滑(C)M图有突变,Q图光滑连续(D)M图有凸变,Q凸

11、有折角43. 梁剪切弯曲时,其横截面上 。(A)只有正应力,无剪应力(B)只有剪应力,无正应力(C)既有正应力,又有剪应力(D)既无正应力,也无剪应力44. 梁的挠度是 。(A)挠曲面上任一点沿梁轴垂直方向的线位移(B)横截面形心沿梁轴垂直方向的线位移(C)横截面形心沿梁轴方向的线位移(D)横截面形心的位移45. 应用叠加原理求位移对应满足的条件是 。(A)线弹性小变形(B)静定结构或构件(C)平面弯曲变形(D)等截面直梁46. 根据小变形条件,可以认为 。(A)构件不变形(B)构件不破坏(C)构件仅发生弹性变形(D)构件的变形远小于其原始尺寸47. 在下列关于内力与应力的讨论中,说法 是正确

12、的。(A)内力是应力的代数和(B)内力是应力的矢量和(C)应力是内力的平均值(D)应力是内力的分布集度48. 在轴向拉压杆和受扭圆轴的横截面上分别产生 。(A)线位移、线位移(B)角位移、角位移(C)线位移、角位移(D)角位移、线位移49. 拉压杆横截面上的正应力公式N/A 的主要应用条件是 。(A)应力在比例极限以内(B)外力合力作用线必须重合于轴线(C)轴力沿杆轴为常数(D)杆件必须为实心截面直杆50. 轴向拉压杆,在与其轴线平行的纵向截面上 。(A)正应力为零,剪应力不为零(B)正应力不为零,剪应力为零(C)正应力和剪应力均不为零(D)正应力和剪应力均为零51. 设一阶梯形杆的轴力沿杆轴

13、是变化的,则在发生破坏的截面上 。(A)外力一定最大,且面积定最小(B)外力不一定最大,但面积一定最小(C)轴力不一定最大,但面积一定最小(D)轴力与面积之比一定最大52. 在连接件上,剪切面和挤压面分别 于外力方向。(A)垂直,平行(B)平行、垂直(C)平行(D)垂直53. 剪应力互等定理是由单元体的 导出的。(A)静力平衡关系(B)几何关系(C)物理关系(D)强度条件54. 直径为D的实心圆轴,两端受扭转力矩作用,轴内最大剪应力为,若轴的直径改为D/2,则轴内的最大剪应力变为 。(A)2(B)4(C)8(D)1655. 下图所示圆截面,当其圆心沿z轴向右移动时,惯性矩 。(A)Iy不变,I

14、Z增大 (B)Iy不变,IZ减小(C)Iy增大IZ不变 (D)IY减小,IZ不变 56. 选取不同的坐标系时,弯曲内力的符号情况是 。(A)弯矩不同,剪力相同(B)弯矩相同,剪力不同(C)弯矩和剪力均相同(D)弯矩和剪力都不同57. 梁在某截面处,若剪力=0,则该截面处弯矩定为 。(A)极值(B)零值C最大值(D)最小值58. 悬臂粱受力如图所示,其中 。(A)AB段是纯弯曲,BC段是剪切弯曲(B)AB段是剪切弯曲,BC段是纯弯曲(C)全梁均是纯弯曲(D)全梁均为剪切弯曲59. 在下列关于梁转角的说法中, 是错误的。(A)转角是横截面绕中性轴转过的角位移(B)转角是变形前后同一横截面间的夹角(

15、C)转角是挠曲线之切线与横坐标轴间的夹角(D)转角是横截面绕梁轴线转过的角度60. 在下列关于单元体的说法中, 是正确的。(A)单元体的形状必须是正六面体(B)单元体的各个面必须包含对横截面(C)单元体的各个面中必须有对平行面(D)单元体的三维尺寸必须为无穷小61. 外力包括 。(A)集中载荷和分布载荷(B)静载荷和动载荷(C)所有作用在物体外部的力(D)载荷和支反力62. 在一截面上的任意点处,正应力与剪应力的夹角 。(A)90o(B)45o(C) 0o(D)为任意角63. 杆件发生弯曲变形时,横截面通常 。(A)只发生线位移(B)只发生角位移(C)发生线位移和角位移(D)不发生位移64.

16、图示阶梯形杆受三个集中力P作用设AB、BC、CD段的横截面面积为A、2A、3A,则三段杆的横截面上 。(A)内力不相同,应力相同 (B)内力相同,应力不相同(C)内力和应力均相同 (D)内力和应力均不相同65. 对于低碳钢,当单向拉伸应力不大于 时,虎克定律=E成立。(A)比例极限(B)弹性极限(C)屈服极限(D)强度极限66. 由变形公式可知 弹性模量 。(A)与应力的量纲相等(B)与载荷成正比(C)与杆长成正比(D)与横截面面积成反比67. 连接件剪应力的实用计算是以假设 为基础的。(A)剪应力在剪切面上均匀分布(B)剪应力不超过材料的剪切比例极限(C)剪切面为圆形或方形(D)剪切面面积大

17、于挤压面面积68. 剪应力互等定理的运用条件是 。(A)纯剪切应力状态(B)平衡力状态(C)线弹性范围(D)各向同性材料69. 在下列关于平面图形的结论中, 是错误的。(A)图形的对称轴必定通过形心(B)图形两个对称轴的交点必为形心(C)图形对对称轴的静矩为零(D)使静矩为零的轴必为对称轴70. 在弯曲和扭转变形中,外力矩的矢量方向分别与杆轴线 。(A)垂直、平行(B)垂直(C)平行、垂直(D)平行71. 水平梁在截面上的弯矩在数值上,等于该截面 。(A)以左和以右所有集中力偶(B)以左或以右所有集中力偶(C)以左和以右所有外力对截面形心的力矩(D)以左或以右所有外力对截面形心的力矩72. 悬

18、臂梁及其所在坐标系如图所示,其自由端的 。(A)挠度为正,转角为负(B)挠度为负,转角为正(C)挠度和转角都为正(D)挠度和转角都为负73. 图示应力圆对应的是 应力状态。(A) 纯剪切(B) 单向(C) 二向(D)三向74. 莫尔强度理论认为材料的破坏 。(A)与破坏面上的剪应力有关,与正应力无关(B)与破坏面上的正应力有关,与剪应力无关(C)与破坏面上的正应力和剪应力均无关(D)与破坏面上的正应力和剪应力均有关75. 构件在外力作用下 的能力称为稳定性。A不发生断裂B保持原有平衡状态C不产生变形D保持静止76. 没有明显屈服平台的塑性材料,其破坏应力取材料的 。A比例极限B名义屈服极限C强

19、度极限D根据需要确定77. 若约定:向上为正,、图的、坐标指向上方,则下列论述中哪一个是正确的 。A由,当梁上作用有向下的均布载荷时,值为负,则梁内剪力也必为负值B由,当梁上作用有向下的均布载荷时,其弯矩曲线向上凸,则弯矩为正C若梁上某段内的弯矩为零,则该段内的剪力亦为零D若梁上某段内的弯矩为零时,则该段内的剪力不一定为零78. 一点处的应力状态是 。A过物体内一点所取单元体六个面上的应力B受力物体内各个点的应力情况的总和C过受力物体内一点所做的各个不同截面上应力情况的总称D以上都不对79. 根据各向同性假设,可以认为 。A材料各点的力学性质相同B构件变形远远小于其原始尺寸C材料各个方向的受力

20、相同D材料各个方向的力学性质相同80. 一端固定、另一端有弹簧侧向支承的细长压杆,可采用欧拉公式() 计算。是确定压杆的长度系数的取值范围: 。.00.72.00.50.50.781. 正三角形截面压杆,其两端为球铰链约束,加载方向通过压杆轴线。当载荷超过临界值,压杆发生屈曲时,横截面将绕哪一根轴转动?现有四种答案,请判断哪一种 是正确的。A绕y轴B绕通过形心c的任意轴C绕z轴D绕y轴或z轴82. 有下列几种说法,你认为哪一种对?A影响杆件工作应力的因素有材料性质;影响极限应力的因素有载荷和截面尺寸;影响许用应力的因素有工作条件B影响杆件工作应力的因素有工作条件;影响极限应力的因素有材料性质;

21、影响许用应力的因素有载荷和截面尺寸C影响杆件工作应力的因素有载荷和截面尺寸;影响极限应力的因素有材料性质;影响许用应力的因素有材料性质和工作条件D以上均不对。83. 建立平面弯曲正应力公式,需要考虑的关系有 。A平衡关系,物理关系,变形几何关系B变形几何关系,物理关系,静力关系C变形几何关系,平衡关系,静力关系D平衡关系, 物理关系,静力关系84. 根据压杆稳定设计准则,压杆得许可载荷。当横截面面积A增加一倍时,试分析压杆的许可载荷将按下列四种规律中的哪一种变化?A 增加1倍B 增加2倍C 增加1/2倍D 压杆的许可载荷随A的增加呈线性变化二、计算题85. 如图:各杆重量不计,杆端皆用销钉联接

22、,在节点处悬挂一重W10KN的重物,杆横截面为A1A2200mm2、A3100 mm2,杆3与杆1和杆2夹角相同450,杆的弹性模量为E1=E2100GPa、E3=200 GPa。求各杆内的应力。86. 一简支梁如图,在C点处作用有集中力偶Me。计算此梁的弯矩和剪力并绘制剪力图和弯矩图。87. 已知构件某点处于二向应力状态,应力情况如图,求该点处主平面的方位和主应力值,求倾角为37.50的斜截面上应力。88. 外伸梁AD如图,试求横截面C、B支座稍右和稍左的横截面上的剪力和弯矩。89. 一铰接结构如图示,在水平刚性横梁的B端作用有载荷F,垂直杆1,2的抗拉压刚度分别为E1A1,E2A2,若横梁

23、AB的自重不计,求两杆中的内力。90. T形截面的铸铁外伸梁如图,Z为形心,形心主惯性矩IZ2.910-5m4。计算此梁在横截面B、C上的正应力最大值。横断面结构:91. 图示刚性梁AB受均布载荷作用,梁在A端铰支,在B点和C点由两根钢杆BD和CE支承。已知钢杆的横截面面积ADB=200mm2,ACE=400mm2,试求两钢杆的内力。92. 计算图示结构BC和CD杆横截面上的正应力值。已知CD杆为28的圆钢,BC杆为22的圆钢。4m4m1m20kN18kN30DEABC93. 一木桩受力如图所示。柱的横截面为边长200mm的正方形,材料可认为符合胡克定律,其弹性模量E=10GPa。如不计柱的自

24、重,试求:(1)作轴力图(2)各段柱横截面上的应力(3)各段柱的纵向线应变(4)柱的总变形94. Q235钢制成的矩形截面杆,两端约束以及所承受的载荷如图示(a)为正视图(b)为俯视图),在AB两处为销钉连接。若已知L2300mm,b40mm,h60mm。材料的弹性模量E205GPa。试求此杆的临界载荷。三、作图题95. 试作下图杆的剪力图和弯矩图。96. 根据简支梁的弯矩图作出梁的剪力图与荷载图。97. 作梁的弯矩图。四、判断题(略)答案一、单选题1. C2. D3. C4. D5. D6. A7. D8. B9. B10. B11. D12. A13. C14. C15. D16. D17

25、. C18. B19. D20. A21. D22. D23. C24. C25. D26. A27. C28. D29. D30. D31. A32. C33. C34. B35. D36. B37. C38. D39. A40. A41. B42. B43. C44. B45. A46. D47. D48. C49. B50. D51. D52. B53. A54. C55. C56. C57. A58. B59. D60. D61. D62. A63. C64. A65. A66. A67. A68. B69. D70. A71. D72. A73. C74. D75. B76. B77

26、. C78. C79. D80. B81. B82. C83. B84. D二、计算题85. 考虑静力平衡 由于都是铰接,杆所受重力忽略,三杆均为二力杆。应用截面法取分离体,F1、F2、F3为杆的轴力,由静力平衡条件:2分(1)题有三个未知轴力,有两个静力方程,是超静定问题,需要一个补充方程(2)几何关系 设整个杆系在荷载作用下的变形是对称的,即只有节点A的铅直位移。(3)利用变形于内力的物理关系2分(4)解联立方程组 2分2分3分解得:F3=5.85KN2分F1= F2 =2.93KN 2分12F1/A1=14.7MPa2分2分3F3/A3=58.5MPa1分86. 解:求支反力利用平衡方程

27、解得:2分剪力方程:(a) 2分弯矩方程:AC段0xa (b)3分CB段 axL(c)3分根据方程(a),剪力图是一条平行轴线的直线。根据(b)、(c)作梁的弯矩图,各是一条斜直线。最大弯矩。5分5分87. 解:求主应力和主平面已知应力值:x=40Mpa; y=-20MPa;x=-30Mpa3分求主平面方位:则一个主平面与x的夹角p为450/2+22.501分根据两个主平面相互垂直,得另一个主平面方位为22.50+900+112.50。求主应力值:3分则主应力 1=52.4Mpa 3=-32.4Mpa 2=0 3分求倾斜截面上的应力 将已知的应力和倾角代入公式:根据垂直与零应力面地任意两个相互

28、垂直的截面上的正应力之和不变原则,可得该倾斜面的另一正应力。3分3分 2分根据剪应力互等定理得:2分88. 解:(1)求支反力由平衡方程1分2分2分 (2)求截面C上的剪力QC和弯矩MC由截面C的左侧得: 2分3分(3)求截面B左和B右的剪力和弯矩从截面B左的左侧上的外力得: 2分3分从截面B右的左侧的外力得:2分3分89. 解: 4分变形协调方程:4分4分4分4分90. 解:(1)作弯矩图由图可见两截面B、C上的弯矩分别为2分(2)计算截面B上的正应力最大拉应力和最大压应力分别在截面的上边缘和下边缘,引用MB=-8KNm可得其值:5分(3)计算截面C上的正应力该截面上的最大拉应力和最大压应力分别在下边缘和上边缘。引用MC12KNm可得其值:5分 4分 4分91. 解:列静力平衡方程3分变形协调方程2分3分 4分4分4分92. 解:以AB杆为研究对像 4分以CDE为研究对像4分 4分 4分4分93. 解:(1)作轴力图5分(2)由轴力图可知AC段和CB段的轴力分别为100KN和260KN则各段的应力分别为: 3分3分(3)由胡克定律求得各段柱的纵向线应变为: 3分3分(4)柱的总变形3分94. 解:正视图:3分 3分3分俯视图:3分 2分3分3分三、作图题95. 两图各5分。96. 两图各5分。97. 10分四、判断题(略)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com