数学模型.ppt

上传人:创****公 文档编号:1645206 上传时间:2019-10-21 格式:PPT 页数:259 大小:4.60MB
返回 下载 相关 举报
数学模型.ppt_第1页
第1页 / 共259页
数学模型.ppt_第2页
第2页 / 共259页
点击查看更多>>
资源描述

《数学模型.ppt》由会员分享,可在线阅读,更多相关《数学模型.ppt(259页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、数 学 模 型,课 程 简 介,第一章 建立数学模型第二章 初等模型第三章 简单的优化模型第四章 数学规划模型 第五章 微分方程模型第六章 稳定性模型第七章 差分方程模型第八章 离散模型第九章 概率模型第十章 统计回归模型附录: 数学建模实验,教 学 进 度,第一章 建立数学模型,1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例1.4 数学建模的方法和步骤1.5 数学模型的特点和分类1.6 怎样学习数学建模,玩具、照片、飞机、火箭模型 , 实物模型,水箱中的舰艇、风洞中的飞机 , 物理模型,地图、电路图、分子结构图 , 符号模型,模型是为了一定目的,对客观事物的一部分

2、进行简缩、抽象、提炼出来的原型的替代物,模型集中反映了原型中人们需要的那一部分特征,1.1 从现实对象到数学模型,我们常见的模型,你碰到过的数学模型“航行问题”,用 x 表示船速,y 表示水速,列出方程:,答:船速每小时20千米/小时.,甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?,x =20y =5,航行问题建立数学模型的基本步骤,作出简化假设(船速、水速为常数);,用符号表示有关量(x, y表示船速和水速);,用物理定律(匀速运动的距离等于速度乘以 时间)列出数学式子(二元一次方程);,求解得到数学解答(x=20, y=5);,回答原

3、问题(船速每小时20千米/小时)。,数学模型 (Mathematical Model) 和数学建模(Mathematical Modeling),对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。,建立数学模型的全过程(包括表述、求解、解释、检验等),数学模型,数学建模,1.2 数学建模的重要意义,电子计算机的出现及飞速发展;,数学以空前的广度和深度向一切领域渗透。,数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。,在一般工程技术领域数学建模仍然大有用武之地;,在高新技术领域数学建模几乎是必不可少的工具;,数学进入

4、一些新领域,为数学建模开辟了许多处女地。,数学建模的具体应用,分析与设计,预报与决策,控制与优化,规划与管理,数学建模,计算机技术,知识经济,1.3 数学建模示例,1.3.1 椅子能在不平的地面上放稳吗,问题分析,模型假设,通常 三只脚着地,放稳 四只脚着地,四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;,地面高度连续变化,可视为数学上的连续曲面;,地面相对平坦,使椅子在任意位置至少三只脚同时着地。,模型构成,用数学语言把椅子位置和四只脚着地的关系表示出来,椅子位置,利用正方形(椅脚连线)的对称性,用(对角线与x轴的夹角)表示椅子位置,四只脚着地,距离是的函数,四个距离(四只脚),A,C

5、两脚与地面距离之和 f(),B,D 两脚与地面距离之和 g(),两个距离,椅脚与地面距离为零,正方形ABCD绕O点旋转,用数学语言把椅子位置和四只脚着地的关系表示出来,f() , g()是连续函数,对任意, f(), g()至少一个为0,数学问题,已知: f() , g()是连续函数 ; 对任意, f() g()=0 ; 且 g(0)=0, f(0) 0. 证明:存在0,使f(0) = g(0) = 0.,模型构成,地面为连续曲面,椅子在任意位置至少三只脚着地,模型求解,给出一种简单、粗糙的证明方法,将椅子旋转900,对角线AC和BD互换。由g(0)=0, f(0) 0 ,知f(/2)=0 ,

6、 g(/2)0.令h()= f()g(), 则h(0)0和h(/2) p2/n2 ,对 不公平,A,p1/n1 p2/n2=5,公平分配方案应使 rA , rB 尽量小,设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B,不妨设分配开始时 p1/n1 p2/n2 ,即对A不公平, 对A的相对不公平度,将绝对度量改为相对度量,类似地定义 rB(n1,n2),将一次性的席位分配转化为动态的席位分配, 即,“公平”分配方法,若 p1/n1 p2/n2 ,定义,1)若 p1/(n1+1) p2/n2 ,,则这席应给 A,2)若 p1/(n1+1) p2/(n2+1),,应计算rB(n

7、1+1, n2),应计算rA(n1, n2+1),若rB(n1+1, n2) p2/n2,问:,p1/n1rA(n1, n2+1), 则这席应给 B,当 rB(n1+1, n2) 640,g=0.1,敏感性分析,研究 r, g变化时对模型结果的影响,设g=0.1不变,t 对r 的(相对)敏感度,生猪每天体重增加量r 增加1%,出售时间推迟3%。,敏感性分析,研究 r, g变化时对模型结果的影响,设r=2不变,t 对g的(相对)敏感度,生猪价格每天的降低量g增加1%,出售时间提前3%。,强健性分析,保留生猪直到利润的增值等于每天的费用时出售,由 S(t,r)=3,建议过一周后(t=7)重新估计

8、, 再作计算。,研究 r, g不是常数时对模型结果的影响,w=80+rt w = w(t),p=8-gt p =p(t),若 (10%), 则 (30%),3.3 森林救火,森林失火后,要确定派出消防队员的数量。队员多,森林损失小,救援费用大;队员少,森林损失大,救援费用小。综合考虑损失费和救援费,确定队员数量。,问题分析,问题,记队员人数x, 失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 时刻t森林烧毁面积B(t).,损失费f1(x)是x的减函数, 由烧毁面积B(t2)决定.,救援费f2(x)是x的增函数, 由队员人数和救火时间决定.,存在恰当的x,使f1(x), f2(x)之和最小

9、,关键是对B(t)作出合理的简化假设.,问题分析,失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形,分析B(t)比较困难,转而讨论森林烧毁速度dB/dt.,模型假设,3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费),1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度),2)t1tt2, 降为-x (为队员的平均灭火速度),4)每个队员的单位时间灭火费用c2, 一次性费用c3,假设1)的解释,火势以失火点为中心,均匀向四周呈圆形蔓延,半径 r与 t 成正比,模型建立,目标函数总费用,模型建立,目标函数总费用,模型求解

10、,求 x使 C(x)最小,结果解释, / 是火势不继续蔓延的最少队员数,其中 c1,c2,c3, t1, ,为已知参数,模型应用,c1,c2,c3已知, t1可估计,c2 x,c1, t1, x,c3 , x ,结果解释,c1烧毁单位面积损失费, c2每个队员单位时间灭火费, c3每个队员一次性费用, t1开始救火时刻, 火势蔓延速度, 每个队员平均灭火速度.,为什么?, ,可设置一系列数值,由模型决定队员数量x,3.4 最优价格,问题,根据产品成本和市场需求,在产销平衡条件下确定商品价格,使利润最大,假设,1)产量等于销量,记作 x,2)收入与销量 x 成正比,系数 p 即价格,3)支出与产

11、量 x 成正比,系数 q 即成本,4)销量 x 依赖于价格 p, x(p)是减函数,建模与求解,收入,支出,利润,进一步设,求p使U(p)最大,使利润 U(p)最大的最优价格 p*满足,最大利润在边际收入等于边际支出时达到,建模与求解,结果解释,q / 2 成本的一半,b 价格上升1单位时销量的下降 幅度(需求对价格的敏感度),a 绝对需求( p很小时的需求),b p*,a p* ,思考:如何得到参数a, b?,3.6 消费者均衡,问题,消费者对甲乙两种商品的偏爱程度用无差别曲线族表示,问他如何分配一定数量的钱,购买这两种商品,以达到最大的满意度。,设甲乙数量为q1,q2, 消费者的无差别曲线

12、族(单调减、下凸、不相交),记作 U(q1,q2)=c,U(q1,q2) 效用函数,已知甲乙价格 p1,p2, 有钱s,试分配s,购买甲乙数量 q1,q2,使 U(q1,q2)最大.,模型及求解,已知价格 p1,p2,钱 s, 求q1,q2,或 p1q1 / p2q2, 使 U(q1,q2)最大,几何解释,直线MN:,最优解Q: MN与 l2切点,斜率,结果解释,边际效用,消费者均衡状态在两种商品的边际效用之比恰等于它们价格之比时达到。,效用函数U(q1,q2) 应满足的条件,A. U(q1,q2) =c 所确定的函数 q2=q2(q1)单调减、下凸,解释 B的实际意义,效用函数U(q1,q2

13、) 几种常用的形式,消费者均衡状态下购买两种商品费用之比与二者价格之比的平方根成正比。,U(q1,q2)中参数 , 分别表示消费者对甲乙两种商品的偏爱程度。,购买两种商品费用之比与二者价格无关。,U(q1,q2)中参数 , 分别表示对甲乙的偏爱程度。,思考:如何推广到 m ( 2) 种商品的情况,效用函数U(q1,q2) 几种常用的形式,第四章 数学规划模型,4.3 汽车生产与原油采购4.5 饮料厂的生产与检修,数学规划模型,实际问题中的优化模型,x决策变量,f(x)目标函数,gi(x)0约束条件,多元函数条件极值,决策变量个数n和约束条件个数m较大,最优解在可行域的边界上取得,数学规划,线性

14、规划非线性规划整数规划,重点在模型的建立和结果的分析,如果生产某一类型汽车,则至少要生产80辆, 那么最优的生产计划应作何改变?,例1 汽车厂生产计划,汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量。,制订月生产计划,使工厂的利润最大。,4.3 汽车生产与原油采购,设每月生产小、中、大型汽车的数量分别为x1, x2, x3,汽车厂生产计划,模型建立,线性规划模型(LP),模型求解,3) 模型中增加条件:x1, x2, x3 均为整数,重新求解。,OBJECTIVE FUNCTION VALUE 1) 632.2581VARIABLE VALUE RED

15、UCED COST X1 64.516129 0.000000 X2 167.741928 0.000000 X3 0.000000 0.946237 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 0.731183 3) 0.000000 0.003226,结果为小数,怎么办?,1)舍去小数:取x1=64,x2=167,算出目标函数值z=629,与LP最优值632.2581相差不大。,2)试探:如取x1=65,x2=167;x1=64,x2=168等,计算函数值z,通过比较可能得到更优的解。,但必须检验它们是否满足约束条件。为什么?,IP可用LIND

16、O直接求解,整数规划(Integer Programming,简记IP),“gin 3”表示“前3个变量为整数”,等价于:gin x1gin x2gin x3,IP 的最优解x1=64,x2=168,x3=0,最优值z=632,max 2x1+3x2+4x3st1.5x1+3x2+5x3600280x1+250x2+400x3 0;x=x1+x2+x3; (x1 - 500) * x2=0; (x2 - 500) * x3=0; x1 0;x11 0;x12 0;x21 0;x22 0;x1 0;x2 0;x3 0;end,Objective value: 4800.000Variable V

17、alue Reduced CostX11 500.0000 0.0000000E+00X21 500.0000 0.0000000E+00X12 0.0000000E+00 0.0000000E+00X22 0.0000000E+00 0.0000000E+00 X1 0.1021405E-13 10.00000 X2 0.0000000E+00 8.000000 X3 0.0000000E+00 6.000000 X 0.0000000E+00 0.0000000E+00,LINGO得到的是局部最优解,还能得到更好的解吗?,用库存的500吨原油A、500吨原油B生产汽油甲,不购买新的原油A,

18、利润为4,800千元。,y1, y2 , y3=1 以价格10, 8, 6(千元/吨)采购A,增加约束,方法2,0-1线性规划模型,可用LINDO求解,y1,y2,y3 =0或1,OBJECTIVE FUNCTION VALUE 1) 5000.000 VARIABLE VALUE REDUCED COST Y1 1.000000 0.000000 Y2 1.000000 2200.000000 Y3 1.000000 1200.000000 X11 0.000000 0.800000 X21 0.000000 0.800000 X12 1500.000000 0.000000 X22 100

19、0.000000 0.000000 X1 500.000000 0.000000 X2 500.000000 0.000000 X3 0.000000 0.400000 X 1000.000000 0.000000,购买1000吨原油A,与库存的500吨原油A和1000吨原油B一起,生产汽油乙,利润为5,000千元 。,x1 , x2 , x3 以价格10, 8, 6(千元/吨)采购A的吨数,优于方法1的结果,b1 b2 b3 b4,方法3,b1 xb2,x= z1b1+z2b2,z1+z2=1,z1, z20, c(x)= z1c(b1)+z2c(b2).,b2 x b3,x= z2b2+z

20、3b3, z2+z3=1,z2, z3 0, c(x)= z2c(b2)+z3c(b3).,b3 x b4,x= z3b3+z4b4,z3+z4=1,z3, z4 0, c(x)= z3c(b3)+z4c(b4).,直接处理处理分段线性函数c(x),IP模型,LINDO求解,得到的结果与方法2相同.,处理分段线性函数,方法3更具一般性,bkxbk+1yk=1,否则,yk=0,方法3,bkxbk+1 ,x= zkbk+z k+1 bk+1zk+zk+1 =1,zk, zk+1 0, c(x)= zkc(bk)+zk+1 c(bk+1 ).,对于k=1,2,3,4.5 饮料厂的生产与检修,单阶段生

21、产计划,多阶段生产计划,生产批量问题,企业生产计划,考虑与产量无关的固定费用,给优化模型求解带来新的困难,安排生产计划, 满足每周的需求, 使4周总费用最小。,存贮费:每周每千箱饮料 0.2千元。,例1 饮料厂的生产与检修计划,在4周内安排一次设备检修,占用当周15千箱生产能力,能使检修后每周增产5千箱,检修应排在哪一周?,某种饮料4周的需求量、生产能力和成本,问题分析,除第4周外每周的生产能力超过每周的需求; 生产成本逐周上升;前几周应多生产一些。,饮料厂在第1周开始时没有库存; 从费用最小考虑, 第4周末不能有库存; 周末有库存时需支出一周的存贮费; 每周末的库存量等于下周初的库存量。,模型假设,目标函数,约束条件,产量、库存与需求平衡,决策变量,能力限制,非负限制,模型建立,x1 x4:第14周的生产量,y1 y3:第13周末库存量,存贮费:0.2 (千元/周千箱),模型求解,4周生产计划的总费用为528 (千元),最优解: x1 x4:15,40,25,20; y1 y3: 0,15,5 .,LINDO求解,检修计划,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > pptx模板 > 工作办公

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com