Fluent多相流模型选择与设定.docx

上传人:飞****2 文档编号:15091835 上传时间:2022-05-10 格式:DOCX 页数:56 大小:142.20KB
返回 下载 相关 举报
Fluent多相流模型选择与设定.docx_第1页
第1页 / 共56页
Fluent多相流模型选择与设定.docx_第2页
第2页 / 共56页
点击查看更多>>
资源描述

《Fluent多相流模型选择与设定.docx》由会员分享,可在线阅读,更多相关《Fluent多相流模型选择与设定.docx(56页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、精选优质文档-倾情为你奉上1.多相流动模式我们可以根据下面的原则对多相流分成四类: 气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。o 液滴流动:连续气体中的离散流体液滴。o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。 气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。从床底不断充入的气体使得颗粒得以悬浮。改变气体的流量,就会有

2、气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。 液-固两相流o 泥浆流:流体中的颗粒输运。液-固两相流的基本特征不同于液体中固体颗粒的流动。在泥浆流中,Stokes 数通常小于1。当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。在澄清层和沉降层中间,是一个清晰可辨的交界面。 三相流

3、(上面各种情况的组合)各流动模式对应的例子如下: 气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷 液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗 活塞流例子:管道或容器内有大尺度气泡的流动 分层自由面流动例子: 分离器中的晃动,核反应装置中的沸腾和冷凝 粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动 风力输运例子:水泥、谷粒和金属粉末的输运 流化床例子:流化床反应器,循环流化床 泥浆流例子: 泥浆输运,矿物处理 水力输运例子:矿物处理,生物医学及物理化学中的流体系统 沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧

4、拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。欧拉法即为两相流模型,拉格朗日法即为离散相模型欧拉法着眼于空间的点,基本思想是考察空间一个点上的物理量及其变化。在欧拉方法中,FLUENT将不同的相被处理成互相贯穿的连续介质。各相的体积率是时间和空间的连续函数,其体积分率之等于1。欧拉法中两相流模型包括:VOF(the volumeoffluid)模型,混合模型和欧拉一欧拉模型VOF模型(Volume of Fluid Model) 混合模型(Mixture Model) l 欧拉模型(Eulerian Model) 2.1 VOF模型(Volume of Fluid Model) И

5、721; VOF模型用来处理没有相互穿插的多相流问题,在处理两相流中,假设计算的每个控制容积中第一相的体积含量为1,如果1=0,表示该控制容积中不含第一相,如果1=1,则表示该控制容积中只含有第一相,如果01species ;选择 species transport ;下面的reactions不要选 ;然后选择一个包含H2O的mixture material;默认的mixture-template就可以;然后在DPM属性设置中的particle type选择Droplet;在Material中选water-liquid;在Evaporating Species 中选H2O;_(1)请问DPM

6、模型的使用前提条件是什么?使用中有什么限制?答案:颗粒相体积分数占气相体积分数小于10%。此时可将颗粒相视为离散相,可用DPM,否则可视为连续相(拟流体),采用两相流模型(Mixing Model、EulerModel)(2)那么颗粒相可以是液体吗?答案:可以是液滴,你可以假设液滴为球形的,这样就可以了 还可以做一些其他假设。(3)在DPM 模型中,在离散相的设定中采用surface,颗粒分布rosin 分布,计算为稳态,计算完成后,在相同条件下利用partical tracking 得出的分离效率均不同,又是差别还比较大。请问是不是用这种方法不能得出分离效率,或者fluent 这种计算随机性

7、较大呢?答案:将射流源里面的number of tries 的值增大,发现这样可以看到湍流对于离散相的影响,你每点一次显示的值不一样,也是因为湍流的影响,多次的点击就相当于将上面的值增大,不过是将多次的计算结果都显示在一个窗口上,(4)当我将计算模型从segregated 转换成coupled 的时候,在运行DPM 计算模型时,出现如下错误:Error: couldnt allocate fine level coefficient matrixError Object: ()请问如何消除?如果换回segregated,问题又没有了,我想是不是使用coupled(solver)的时候另有设置?

8、答案:我的理解,既然选定的解算器,就已经决定了求解的方式:是分别求出各变量(segregate),还是所有方程联立共同求出各变量(coupled)。但你从segregate变为coupled 时,是否考虑了有时,这两个是不可以相互交换的?比如用segregate 时,可以不考虑能量方程,而从连续方程和动量方程求解出压力速度场,然后再求解出温度场,这样这几个参数不是相互依赖的关系。而用coupled是,方程是耦合的,必须同时求解。我想,大概出现问题的原因在这里。(5)使用segregated 时可以不考虑能量方程,那是不是也可以考虑,还有在solver中选定energy 一项,是不是就算考虑了能

9、量方程?答案:这里说的是求解过程中,比如温度变化不大时,粘度可以认为是常数,这样流体运动不受温度场的影响,流场可以独立于温度场求解,这时,可以先从连续方程和动量方程中求解出速度和压力来,然后带入能量方程中求出温度来。并不是说不考虑能量方程,只是它们间的相互作用可以不考虑。也就是说将运动和传热问题分开来分析了。所以叫segregated,而coupled,是由于几个因素相互影响不能忽略,比如粘度时温度和函数。等等,必须同时考虑,所以在求解时,要同时解出来,不分先后。所以叫耦合。(6)在DPM(discrete phase model)中,有分散相(particle)位置定义,即firstposi

10、tion 和last position,请问各位这两项分别代表什么,要是需要定义多个particle 的位置,该怎么操作?答案:first position 是你选group 时第一个喷口的位置,last 嘛就是最后那个了你想定义多个的话,就多产生几个injection 好了啊(7)我用DPM 模型模拟粉尘在湍流中的扩散,现有关于离散相参数设置的问题不明,就是在设置两相耦合设置的时候,Number Of Continuous Phase IterationsPer DPM Iteration 也就是迭代计算的时间间隔数应该设多少?如果太大是不是耦合的不好,而太小对连续相影响太大,引起波动不容易

11、收敛。答案:Number Of Continuous Phase Iterations Per DPM Iteration 我通常设为20 次(8)我用颗粒云模型计算出来的结果跟用随机轨道模型的结果不同啊,颗粒云中的最小颗粒群半径应该是0 吧,那么设置不同的最大颗粒群半径结果也有很大差异,现在关键是颗粒云模型的最小以及最大颗粒群半径应该设多少,这个数如果大于某个数值结果就都一样了,如果较小对结果影响就很大答案:用颗粒云模型计算出来的结果跟用随机轨道模型的结果不同。这很正常啊,因为两者的模拟方式不同,怎可能期待会有相同的結果?设置不同的最大颗粒群半径结果也有很大差异,這也是很合理的!顆粒的大小本

12、来就会影响流场的性质。我发现耦合的时间间隔对结果的影响不是很大,那么设10,20 也都差不多。关键是颗粒云模型的最小以及最大颗粒群半径应该设多少?顆粒半径的大小,应该取决于要模拟的物体其半径有多大(可以估计)。_壁面热边界条件中的所有参数结合不同的壁面种类进行说明:一、主要壁面边界参数的说明1、壁面厚度(Wall Thickness):指定流场中Wall 的厚度,默认值0,作为0 厚度的Wall 来处理。当给定厚度的时候,因为壁本身有一定的面积,它和厚度的乘积得到Wall 的体积,由于固体材料有一定的热容,所以这样设置后Wall 条件就有一定的热吸收和贮存的能力。一般来讲,如果在建模时把较厚的

13、壁简化成壁面的话,有时就要考虑这种壁面的热吸收和贮存效应。2、壁面热产生率(Heat Generator Rate):单位体积的Wall 产生的热量。这里不要误解,因为和壁面的厚度配合使用,所以它是体积单位的倒数。如果壁面厚度为0,这个壁面热产生率也就没有意义了,因为有厚度的壁面才是有体积的壁面。一般来讲,这种条件用来处理总的发热流率已知,均匀壁面散热问题。注意:这两个条件和具体的壁面种类选取无关,故放在前面,单独分析。3、热流壁(Heat Flux):这是一个最常用的壁面条件,给定壁面的热流,通过计算可以得到壁面的温度。(*如果热流为0,就是简单而著名的绝热壁条件。)4、温度壁(Temper

14、ature):这个温度壁可以简单的给定常数温度,形成恒温壁,也可以用UDF 等指定随时间变化的温度。这种条件下,可以得到整个流场对壁面的热流率。5、对流壁(Convection):对流壁要求指定外部热对流系数(External Heat Transfer Coefficient ) 和外部参考温度( External Heat Sink Temperature),它的物理意义是,相当于在流场外,也就是壁面外指定一个给定温度和对流系数的对流源,它们向流场内通过对流的方式传输热流。特别要注意的是,在对流壁的界面中,它们分别写成 Heat Transfer Coefficient 和Free Str

15、eam Temperature。6、辐射壁(Radiation):辐射壁要求指定外部辐射系数(Emissivity of The External Wall Surface)和外部辐射参考温度( Temperature of The Radiation Source or Sink On The Exterior),它的物理意义是,相当于在流场外,也就是壁面外指定一个给定温度和辐射系数的辐射源,它们向流场内通过辐射的方式传输热量。特别要注意的是, 在辐射壁的界面中, 它们分别写成External Emissivity和External Radiation Temperature7、对流和辐射混

16、合壁(Mixed):这就是5和6中讲到的两种壁的混合,在这里就不多讲了。8、内部辐射系数(Internal Emissivity):当采用辐射模型计算流场热辐射的时候,如离散坐标辐射模型(DO)等,在壁面条件中增加了这样一个参数。它是一个控制壁面热辐射流率的参数。它的选定根据固体材料的种类选定。这可以查材料手册得到。二、要明确的几个问题1 、外部辐射系数( External Emissivity ) VS 内部辐射系数(Internal Emissivity)。FLUENT 中采用这样两个相似的名字有它一定的道理,它们都是用来计算辐射的时候要在总辐射能量的前面用到的一个系数。但同时这样的命名也给理解造成了一定麻烦,很容易混淆。要是从物理概念上理解这两个参数就不会弄混了。外部辐射考虑当在流场外有一个辐射源向流场辐射热量的时候而用到的参数,也就是说只有你选择辐射壁或者混合壁的时候这个参数才出现,要根据流场外的辐射源来确定这个参数。内部辐射系数,是在你考虑辐射模型的条件下才出现,例如在你选择P1、DO 等计算热辐射的时候,所以这是一个

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com