35KV地方降压变电所设计(共40页).doc

上传人:飞****2 文档编号:13934426 上传时间:2022-05-02 格式:DOC 页数:40 大小:1.02MB
返回 下载 相关 举报
35KV地方降压变电所设计(共40页).doc_第1页
第1页 / 共40页
35KV地方降压变电所设计(共40页).doc_第2页
第2页 / 共40页
点击查看更多>>
资源描述

《35KV地方降压变电所设计(共40页).doc》由会员分享,可在线阅读,更多相关《35KV地方降压变电所设计(共40页).doc(40页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、精选优质文档-倾情为你奉上毕业设计(论文)题 目:35KV地方降压变电所设计班 级:姓 名: 指导教师: 专心-专注-专业35KV地方降压变电站设计本次设计要求进行电气主接线图形式的论证、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器)。原始资料1、变电站 类型:35kv地方降压变电站 2、电 压 等 级:35kV/10kV 3、负 荷 情 况 35kV:最大负荷12.6MVA 10kV:最大负荷8.8MVA4、进,出线情况: 35kV 侧2回进线 10kV 侧 6回出线5、系统情况: (1)35kv侧基准值: SB=100MVA UB1=37KV (2)1

2、0kV侧基准值: SB=100MVA UB2=10.5KV (3)线路参数: 35kv线路为 LGJ-120,其参数为r1=0.236/kmX1=0.348/km /kmZ=z1*l=0.436*10=4.36 6、气象条件:最热月平均气温30 变电站是电力系统的需要环节,它在整个电网中起着输配电的重要作用。 本期设计的35kV降压变为10kV地方变电站,其主要任务是向县城和乡镇用户供电,为保证可靠的供电及电网发展的要求,在选取设备时,应尽量选择动作可靠性高,维护周期长的设备。 根据设计任务书的要求,设计规模为10kV出线6回,35Kv进线2回;负荷状况为35kV最大12.6MVA,10kV最

3、大8.8MVA。 本期设计要严格按电力工程手册、发电厂电气部分等参考资料进行主接线的选择,要与所选设备的性能结合起来考虑,最后确定一个技术合理,经济可靠的最佳方案。 目录摘要. 4 前言. 5 第一章 降压变电站的设计概述. 61.1电力系统接线图. 71.2 10KV负荷系统情况. 7第二章 负荷统计. 72.1负荷分析. 82.2负荷计算. 8第三章 电气主接线设计. 83.1电气主接线概述. 93.2主接线的设计原则及要求. 93.3主接线设计. 93.4主接线方案的比较选择. 10第四章 短路电流计算. 114.1产生短路的原因和短路的定义. 114.2短路的种类. 114.3短路电流

4、计算的目的和方法. 124.4短路电流计算条件. 124.5短路电流的计算. 14第五章 电气设备的选择. 175.1电气设备选择的一般原则. 175.2电气设备选择的技术条件. 175.3 35KV进线断路器隔离快开关的选择. 195.4 35KV主变压器侧断路器隔离开关的选择. 215.5 10KV侧断路器隔离开关的选择. 22第六章 互感器的选择. 236.1电流互感器的选择. 236.2电压互感器的选择. 25第七章 熔断器及开关柜的选择. 267.1熔断器概述. 267.2开关柜的选择. 27第八章 继电保护的设置. 288.1电力变压器的保护. 288.2电力变压器纵差保护接线.

5、298.3纵差动保护的整定计算. 298.4变压器瓦斯保护. 30 8.5过电流保护及母线保护. 31第九章 变电站的防雷. 339.1防雷概述. 339.2避雷针和避雷器的选择. 33结论. 37致谢. 38参考文献. 39摘要 随着电力行业的不断发展,人们对电力供应的要求越来越高,特别是供稳固性、可靠性和持续性。然而电网的稳固性、可靠性和持续性往往取决于变电所的合理设计和配置。一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。出于这几方面的考虑,本论文设计了一个35kV降压变电站,此变电站有两个电压等级,一个是35kV,一个是10kV。同时对于变电站内的主设备进行合理的选

6、型。本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。 关键词 继电器 隔离开关 互感器 熔断器前言电能是发展国民经济的基础,是一种无形的、不能大量储存的二次能源。电能的发、变、送、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。要满足国民经济发展的要求,电力工业必须超前发展,这是世界电力工业发展规律,因此,做好电力规划,加强电网建设,就尤为重要。变电所作为变电站作为电力系统的

7、重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。对其进行设计势在必行,合理的变电所不仅能充分地满足当地的供电需求,还能有效地减少投资和资源浪费。本次设计根据一般变电所设计的步骤进行设计,包括负荷统计,主变选择,主接线选择,短路电流计算,设备选择和校验,继电保护,防雷措施等几大块。并依据相关规定和章程设计其中个个步骤,所以能满足一般变电所的需求。根据我国变电所目前现有电气设备状况以及今后发展趋势,应选用新型号、低损耗、低噪声的电力变压器及性能好、时间长、免维护的SF6断路器及高压开关柜。为此新的设备选择也在设计中得以体现。由于时间仓促

8、和自身知识的局限,导致在设计中难免有遗漏和错误之处,望读者予以批评指正。1降压变电站的设计概述1.1电力系统接线图待设计变电所进线如图1所示: 图2.1 变电所进线示意图系统情况待设计变电所通过一条架空线路由正西方向5km处的一座110kV变电所A送电,回路最大传输功率不大于11.7MW,A变电所系统容量为3000MW。西北方向20km处一座35kV变电所B通过一条架空出线与待设计变电所联系,平时本所与B变电所有少量功率交换。本所投运后功率因数要求到达0.9。1.2 10KV负荷情况10kV负荷情况如表1所示表2.1 10kV负荷分布情况负荷名称最大负荷(kW)回路数供电方式功率因数视在功率(

9、kVA)1#出线15001架空0.852#出线8001架空0.853#出线8001架空0.84#出线20001架空0.855#出线25001架空0.96#出线12001架空0.85电容器回路210kV侧负荷同时率:0.85;10kV侧最小负荷是最大负荷的45;10kV侧最大负荷利用小时数=4800H;待设计变电所年负荷增长率为5%。 本地区气象条件最高气温;最低气温;年平均气温;最热月平均最高温度。2负荷统计2.1负荷分析根据用电的重要性和突然中断供电造成的损失程度可以将负荷分为以下三类:1一类负荷一类负荷,又称为一级负荷,是指突然中断供电将造成人身伤亡或引起对周围环境的严重污染,造成经济上的

10、巨大损失。如重要大型设备损失、重要产品或重要原料生产的产品大量报废、连续生产过程被打乱且需要长时间才能恢复、造成社会秩序严重混乱或产生政治上的重大影响、重要的交通和通讯枢纽中断、国际社交场所没有照明等。 2 二类负荷二类负荷,又称为二级负荷,是指突然中断供电会造成经济上的较大损失。如生产的主要设备损坏、产品大量报废或减产、连续生产过程需要较长时间才能恢复、造成社会秩序混乱、在政治上产生较大影响、交通和通讯枢纽以及城市供水中断、广播电视、商贸中心被迫停止运营等。 3 三类负荷 三类负荷,又称为三级负荷,是指不属于以上一类和二类负荷的其他用电负荷。对于这类负荷,供电所所造成的损失不大或不会直接造成

11、损失。用电负荷的分类,其主要目的是确定供电工程设计和建设的标准,保证建成投入运行工程供电的可靠性,能满足生产或社会安定的需要。对于一级负荷的用电设备,应有两个及以上的独立电源供电,并辅之一其他必要的非电保安设施。二级负荷应由两回线供电,但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。这次设计的变电所所带的负荷均为三级负荷,因此可以用单回线路供电。2.2负荷计算 10kV侧的负荷计算1.5+0.8+0.8+2+2.5+1.2=8.8MW1.5*0.62+0.8*0.62+0.8*0.75+2*0.62+2.5*0.48

12、+1.2*0.62=4.67MVar =10MVA功率因数cos=0.863电气主接线设计3.1电气主接线概述发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也成主电路。它把各电源送来的电能汇集起来,并分给各用户。它表明各种一次设备的数量和作用,设备间的连接方式,以及与电力系统的连接情况。所以电气主接线是电力系统接线组成中的一个重要组成部分。主接线的确定,对电力系统得安全、稳定、灵活、经济运行以及变电所电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会长生直接的影响。3.2主接线的设计原则.及要求1发电厂、变电所在电力系统中的地位和作用; 2发电厂、变电所的

13、分期和最终建设规模; 3负荷大小和重要性; 4系统备用容量大小; 5系统专业对电气主接线提供的具体资料。根据我国能源部关于220500kV变电所设计技术规程SDJ 2-88规定:“变电所的电气主接线应根据该变电所在电力系统中地位,变电所的规划容量、负荷性质、线路、变压器连接元件总数、设备特点等条件确定。并应综合考虑供电可靠、运行灵活、操作检修方便、投资节约和便于过渡或扩建等要求。”因此对主接线的设计要求可以归纳为以下三点。1可靠性;2灵活性;3经济性。3.3主接线设计电气主接线的基本形式就是主要电气设备常用的几种连接方式,它以电源和出线为主体。大致分为有汇流母线和无汇流母线两大类。其中有汇流母

14、线的接线形式可概括地分为单母线接线和双母线接线两大类;无汇流母线的接线形式主要有桥形接线、角形接线和单元接线。35kV侧进线一回,由于使用两台变压器并且还和另一座变电所联络,所以出线三回。由电力工程电气设计手册第二章关于单母线接线的规定:“3563kV配电装置的出线回数不超过3回”。故35kV侧应采用单母线接线。10kV侧出线6回,终期出线8回。由电力工程电气设计手册第二章规定:610kV配电装置出线回路数为6回及以上时采用单母线分段接线,当短路电流过大、出线需要带电抗器时,也可采用双母线接线。3.4主接线方案的比较选择由上可知,此变电所主接线的接线有两种方案。方案一图:图5.1 电气主接线方

15、案一图方案一35kV侧采用的单母线接线,接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置。10kV采用单母线分段连线,对重要用户可从不同段引出两个回路,当一段母线发生故障,分段断路器自动将故障切除,保证正常母线供电不间断,所以此方案同时兼顾了可靠性,灵活性,经济性的要求。方案二图:图5.2 电器主接线方案二图方案二10kV侧通过双母线虽然可以使供电更可靠,调度更加灵活,但每增加一组母线就使每回路需要增加一组母线隔离开关,当母线故障或检修时,隔离开关作为倒换操作电器,容易误操作。并且,带设计边变电所的负荷均每什么一类、二类负荷,没必要增加投资选择双母线接线。综合考虑:方案一:35kV侧

16、采用单母线接线,10kV侧采用单母线分段。方案二:35kV侧采用单母线接线,10kV侧采用双母线接线。通过比较可以得知还是选方案一比较合适,即35kV侧采用单母线接线,10kV侧采用单母线分段。4 短路电流计算4.1产生短路的原因和短路的定义产生短路的主要原因是电器设备载流部分的绝缘损坏。绝缘损坏的原因多因设备过电压、直接遭受雷击、绝缘材料陈旧、绝缘缺陷未及时发现和消除。此外,如输电线路断线、线路倒杆也能造成短路事故。所谓短路时指相与相之间通过电弧或其它较小阻抗的一种非正常连接,在中性点直接接地系统中或三相四线制系统中,还指单相和多相接地。4.2短路的种类 三相系统中短路的基本类型有:三相短路

17、、两相短路、单相接地短路、和两相接地短路。三相短路时对称短路,此时三相电流和电压同正常情况一样,即仍然是对称的。只是线路中电流增大、电压降低而已。除了三相短路之外,其它类型的短路皆系不对称短路,此时三相所处的情况不同,各相电流、电压数值不等,其间相角也不同。 运行经验表明:在中性点直接接地的系统中,最常见的短路是单相短路,约占短路故障的6570%,两相短路约占1015%,两相接地短路约占1020%,三相短路约占5%。4.3短路电流计算的目的和方法1电气主接线比选;2选择导体和电器;3确定中性点接地方式;4计算软导体的短路摇摆;5确定分裂导线间隔棒的间距;6验算接地装置的接触电压和跨步电压;7选

18、择继电保护装置和进行整定计算。电力系统供电的工业企业内部发生短路时,由于工业企业内所装置的元件,其容量比较小,而其阻抗较系统阻抗大得多,当这些元件遇到短路情况时,系统母线上的电压变动很小,可以认为电压维持不变,即系统容量为无穷大。所谓无限容量系统是指容量为无限大的电力系统,在该系统中,当发生短路时,母线电业维持不变,短路电流的周期分量不衰减。当然,容量所以们在这里进行短路电流计算方法,以无穷大容量电力系统供电作为前提计算的,其步骤如下: 1对各等值网络进行化简,求出计算电抗; 2求出短路电流的标么值; 3归算到各电压等级求出有名值。4.4短路电流计算条件1短路电流实用计算中,采用以下假设条件和

19、原则:(1)正常工作时,三相系统对称运行;(2)所有电源的电动势相位角相同;(3)系统中的同步和异步电机均为理想电机,不考虑电机磁饱和、磁滞、涡流及导体集肤效应等影响,转子结构完全对称,定子三相绕组空间位置相差120度电气角度;(4)电力系统中的各元件的磁路不饱和,即带铁芯的电气设备电抗值不随电流大小发生变化;(5)电力系统中所有电源都在额定负荷下运行,其中50%负荷接在高压母线上,50%负荷接在系统侧;(6)同步电机都具有自动调整励磁装置(包括强行励磁);(7)短路发生在短路电流为最大值的瞬间;(8)不考虑短路点的电弧阻抗和变压器的励磁电流;(9)除计算短路电流的衰减时间常数和低压网络的短路

20、电流外,元件的都略去不计;(10)元件的计算参数均取为额定值,不考虑参数的误差和调整范围;(11)输电线路的电容略去不计;(12)用概率统计法制定短路电流运算曲线。2接线方式计算短路电流时所用的接线方式,应是可能发生最大短路电流的正常接线方式,而不能用仅在切换过程中可能并联运行的接线方式。3计算容量 应按本工程设计的规划容量计算,并考虑电力系统的远景发展规划。4短路点的种类一般按三相短路计算,若发电机的两相短路时,中性点有接地系统的以及自耦变压器的回路中发生单相(或两相)接地短路较三相短路情况严重时,则应按严重情况的时候进行计算。5短路点位置的选择短路电流的计算,为选择电气设备提供依据,使所选

21、的电气设备能在各种情况下正常运行,因此短路点的选择应考虑到电器可能通过的最大短路电流。为了保证选择的合理性和经济性,不考虑极其稀有的运行方式。取最严重的短路情况分别在10kV侧的母线和35kV侧的母线上发生短路情况(点a和点b发生短路)。则选择这两处做短路计算。图6.1 短路点选择图4.5短路电流的计算图中a点短路,由于A,B系统短路容量都很大,可以近似都看作为无穷大系统电源系统。取Sj=100MW,Uj1=37kV,Uj2=10.5kV。由公式I= 求的Ij1=1.56kA,Ij2=5.50kA。 线路等效图如下图所示:图6.2 10kV侧短路等效图线路1 X= =0.4*5*100/37=

22、0.1461线路2 X=0.4*20*100/37=0.5844变压器 X= =0.075*100/7.5=1取E1=E2=1 简化后等效电路图如下图所示:图6.3 10kV侧短路等效简化图X=X/X=0.1461/0.5844=0.1169=X+0.5*X=0.1169+0.5*1=0.6169三相短路电流周期分量有效值 I=5.50/0.6169=8.9155kA 三相短路冲击电流最大值 ish=2.55* I =2.55*8.9155=22.7346kA 短路冲击电流有效值 Ish=1.51* I=1.51*8.9155=13.4625kA 三相短路容量 S=U I =1.732*10.

23、5*8.9155=162.1429MVA 35KV侧短路电流的计算等效电路图如下图所示:图6.4 35kV侧短路等效简化图=X=0.1169三相短路电流周期分量有效值I=1.56/0.1169=13.3447kA三相短路冲击电流最大值ish=2.55* I=2.55*13.3447=34.0291kA短路冲击电流有效值Ish=1.51* I=1.51*13.3447=20.1506kA三相短路容量S=*U I=1.732*37*13.3447=855.1843MVA表6.1 三相短路电流计算结果表短路点编号短路点额定电压平均工作电压短路电流周期分量有效值短路点冲击电流短路容量有效值最大值U/k

24、VU/kVI/kAI/kA/kA/kAS/MVAa1010.58.91558.915513.462522.7346162.1429b353713.344713.344720.150634.0291855.18435电气设备选择5.1电气设备选择的一般原则 1 应满足正常运行、检修、短路和过电压情况下的要求,并考虑远景发展; 2 应按当地环境条件校核; 3 应力求技术先进和经济合理; 4 与整个工程的建设标准应协调一致; 5 同类设备应尽量减少品种; 6 选用的新产品均应具有可靠的试验数据,并经正式鉴定合格。在特殊情况下,选用未经正式鉴定的新产品时,应经上级批准。5.2电气设备选择的技术条件选择

25、的高压电器,应能在长期工作条件下和发生过电压、过电流的情况下保持正常运行。1长期工作条件(1)电压 选用的电器允许最高工作电压Umax不得低于该回路的最高运行电压Ug,即UmaxUg(2)电流选用的电器额定电流Ie不得低于所在回路在各种可能运行方式下的持续工作电流Ig,即IeIg由于变压器短时过载能力很大,双回路出线的工作电流变化幅度也较大,故其计算工作电流应根据实际需要确定。高压电器没有明确的过载能力,所以在选择其额定电流时,应满足各种可能运行方式下回路持续工作电流的要求。(3)机械荷载所选电器端子的允许荷载,应大于电器引线在正常运行和短路时的最大作用力。 2短路稳定条件(1)校验的一般原则

26、 电器在选定后应按最大可能通过的短路电流进行动、热稳定校验。校验的短路电流一般取三相短路时的短路电流,若发电机出口的两相短路,或中性点直接接地系统及自耦变压器等回路中的单相、两相接地短路较三相严重时,应按严重情况校验。 用熔断器保护的电器可不验算热稳定。当熔断器保护的电压互感器回路,可不验算动、热稳定。 (2)短路的热稳定条件 式中 在计算时间t秒内,短路电流的热效应(kA*S); It秒内设备允许通过的热稳定电流有效值(kA); t设备允许通过的热稳定电流时间(s)。 (3)短路的动稳定条件 I 式中短路冲击电流峰值(kA); I短路全电流有效值(kA); 电器允许的极限通过电流峰值(kA)

27、; 电器允许的极限通过电流有效值(kA)。3绝缘水平在工作电压和过电压的作用下,电器的内、外绝缘应保证必要的可靠性。电器的绝缘水平,应按电网中出现的各种过电压和保护设备相应的保护水平来确定。当所选电器的绝缘水平低于国家规定的标准数值时,应通过绝缘配合计算,选用适当的过电压保护设备。表7.1 选择高压电器应校验的项目表项目电压电流断流容量短路电流校验动稳定热稳定断路器PPPPP负荷开关PPPPP隔离开关PPPP熔断器PPP电抗器PPP电流互感器PPPP电压互感器PP支柱绝缘子P母线PPP消弧线圈PP避雷器P表中P为应进行校验的项目5.3 35KV进线断路器隔离快开关的选择流过断路器和隔离开关的最

28、大持续工作电流 = ( 额定电压选择 35kV 额定电流选择 开断电流选择 本设计中35kV侧采用SF6断路器,因为与传统的断路器相比,SF6断路器采用SF6气体作为绝缘和灭弧介质,这种断路器具有断口耐压高,允许的开断次数多,检修时间长,开断电流大,灭弧时间短,操作时噪声小,寿命长等优点。因此可选用LW835A型户外高压SF6断路器。选用的断路器额定电压为35kV,最高工作电压为40.5kV,系统电压35kV满足要求。选用的断路器额定电流1600A,去除1.8%的温度影响为1571A,大于最大持续工作电流,满足要求。选用的断路器额定短路开断电流31.5kA,大于短路电流周期分量有效值13.34

29、47kA,满足要求。动稳定校验。ish =34.0291kA=80kA,满足要求。热稳定校验。由电力工程电气设计手册电气一次部分表65知,选用高速断路器,取继电保护装置保护动作时间0.6S,断路器分匝时间0.03S,则校验热效应计算时间为0.63S(后面热稳定校验时间一样)。因此Qk=13.63=112.19(kA)2S。电气设备=31.524=3969(kA)2S。满足要求。表7.2 LW835A具体参数比较表计算数据LW835A35kV35kV247.44A1600A13.3447kA31.5kA34.0291kA80kA112.19(kA)2S3969(kA)2S隔离开关选择GW1435

30、/630型号隔离开关选用的隔离开关额定电压为35kV,系统电压35kV满足要求。选用的断路器额定电流630A,去除1.8%的温度影响为618.7A,大于最大持续工作电流,满足要求。动稳定校验=34.0291kA=40kA,满足要求。热稳定校验Qk=112.19(kA)2S,设备=162=1024(kA)2S,满足要求。表7.3 GW1435/630具体参数比较表计算数据GW1435/63035kV35kV247.44A630A34.0291kA40kA112.19(kA)2S1024(kA)2S5.4 35KV主变压器侧断路器隔离开关的选择 流过断路器和隔离开关的最大持续工作电流 =129.9

31、0A 额定电压选择 35kV 额定电流选择 开断电流选择 由上面表格知LW835A型断路器和GW1435/630型隔离开关同样满足主变侧断路器和隔离开关的要求,动、热稳定校验也一样,所以选择同样的型号。这也满足了选择设备同类设备应尽量较少品种的原则。5.5 10KV侧断路器隔离开关的选择流过断路器和隔离开关的最大持续工作电流=866.03A额定电压选择 10kV 额定电流选择 开断电流选择 10kV侧选用真空XGN210开关柜中的ZN2810型真空断路器选用的断路器额定电压为10kV,最高电压11.5kV,系统电压10kV满足要求。选用的断路器额定电流1600A,去除1.8%的温度影响为157

32、1A,大于最大持续工作电流,满足要求。选用的断路器额定短路开断电流20kA,大于短路电流周期分量有效值8.9155kA,满足要求。动稳定校验。ish =22.7346kA=50kA,满足要求。热稳定校验。Qk=8.63=50.08(kA)2S。电气设备=2024=1600(kA)2S。满足要求。表7.4 ZN2810具体参数比较表计算数据ZN281010kV10kV866.03A1600A8.9155kA20kA22.7346kA50kA50.08(kA)2S1600(kA)2S 隔离开关选择GN2510型隔离开关 选用的隔离开关额定电压10kV,最高工作电压11.5kV系统电压10kV,满足

33、要求。 选用的隔离开关额定电流2000A,去除1.8%的温度影响为1964A,大于最大持续工作电流,满足要求。动稳定校验。ish =22.7346kA=100kA,满足要求。热稳定校验。Qk=8.63=50.08(kA)2S。电气设备=4024=6400(kA)2S。满足要求。表7.5 GN2510具体参数比较表计算数据GN251010kV10kV866.03A2000A22.7346kA100kA50.08(kA)2S6400(kA)2S表7.6 断路器-隔离开关选择一览表断路器隔离开关35kV进线侧LW835AGW1435/63035kV主变侧LW835AGW1435/63010kV侧ZN

34、2810GN25106互感器的选择6.1电流互感器的选择1电流互感器选择的原则电流互感器的选择应满足变电所中电气设备的继电保护、自动装置、测量仪表及电能计量的要求。选择的电流互感器一次回路允许最高工作电压Umax应大于或等于该回路的最高运行电压,即式中电流互感器最高电压,单位为kV; 回路工作电压,即系统标称电压,单位kV。电流互感器的一次额定电流有:5、10、15、20、30、40、50、75、100、150、200、300、400、600、800、1000、12000、15000、2000、3000、4000、5000、6000、8000、10000、15000、20000、25000A。

35、其一次侧额定电流应尽量选择得比回路正常工作电流大1/3以上,以保证测量仪表的最佳工作,并在过负荷时使仪表有适当的指示。二次额定电流有5A和1A两种,强电系统一般选5A,弱电系统一般选用1A。电流互感器动稳定可按来下式校验式中为电流互感器允许通过的最大动稳定电流,单位kA; 系统短路冲击电流,单位kA。电流互感器短时热稳定应大于或等于系统短路时的短时热稳定电流。2 35kV侧电流互感器的选择35kV 级电流互感器分为户外型和户内型两类。户外电流互感器,一般选用油浸瓷箱式绝缘结构的独立式电流互感器,常用LB系列、LABN系列。选用LCZ35(Q)型浇注绝缘加强型电流互感器,作为保护、测量、计算之用

36、。电流互感器额定电压为42kV,大于系统标称电压35kV。额定二次电流5A.主变进线电流为129.90A,额定一次电流选用600A,大于主变电流。选用LCZ35(Q)型电流互感器,0.2级25VA为计量,0.5级40VA为测量,10P15级50VA为保护。动稳定校验,电流互感器动稳定电流为120kA,大于短路冲击电流34.0291kA,满足要求。热稳定校验,电流互感器的热稳定,Qk=13.63=112.19(kA)2S。电气设备= (kA)2S。满足要求。3 10kV侧电流互感器的选择10kV进线选用LQZBJ10型电流互感器。额定电压10kV,最高工作电压11.5kV,大于系统标称电压10kV,额定电流1500A ,大于10kV侧负荷电流866.03A,满足要求。额定二次电流为5A。电流互感器额定动稳定电流140kA,大于10kV侧三相短路冲击电流22.7346kA。热稳定校验Qk=8.63=50.08(kA)2S。电气设备= (kA)2

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com