现代SUV轿车悬架系统设计说明书(共46页).doc

上传人:飞****2 文档编号:13642224 上传时间:2022-04-30 格式:DOC 页数:46 大小:2.14MB
返回 下载 相关 举报
现代SUV轿车悬架系统设计说明书(共46页).doc_第1页
第1页 / 共46页
现代SUV轿车悬架系统设计说明书(共46页).doc_第2页
第2页 / 共46页
点击查看更多>>
资源描述

《现代SUV轿车悬架系统设计说明书(共46页).doc》由会员分享,可在线阅读,更多相关《现代SUV轿车悬架系统设计说明书(共46页).doc(46页珍藏版)》请在得力文库 - 分享文档赚钱的网站上搜索。

1、精选优质文档-倾情为你奉上目 录专心-专注-专业第一章 绪 论1.1悬架系统概述悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。图1-1悬架系统结构图悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。从外表上看如图1-1,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。比

2、如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。悬架最主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。悬架与汽车的多种使用性能有关,为满足这些性能,悬架系统必须能满足这些性能的要求:首先,悬架系统要保证汽车有良好的行驶平顺性,对以载人为主要目的的轿车来讲,乘员在车中承受的振动加速度不能超过国标规定的界限值。其次,

3、悬架要保证车身和车轮在共振区的振幅小,振动衰减快。再次,要能保证汽车有良好的操纵稳定性,一方面悬架要保证车轮跳动时,车轮定位参数不发生很大的变化,另一方面要减小车轮的动载荷和车轮跳动量。还有就是要保证车身在制动、转弯、加速时稳定,减小车身的俯仰和侧倾。最后要保证悬架系统的可靠性,有足够的刚度、强度和寿命。所以,汽车悬架是保证乘坐舒适性的重要部件。现代汽车的悬架尽管有各种不同的结构形式,但一般都由弹性元件、减振装置和导向机构三部分组成。由于汽车行驶的路面不可能绝对平坦,路面作用于车轮上的垂直反力往往是冲击性的,特别是在坏路面上高速行驶时,这种冲击力将达到很大的数值。冲击力传到车架和车身时,可能引

4、起汽车基件的早期损坏,传给乘员和货物时,将使乘员感到极不舒服,货物也可能受到损伤。为了缓和冲击,在悬架中必须装有弹性元件,使车架(或车身)与车桥(或车轮)之间作弹性联系。但弹性系统在受到冲击后,将产生振动。在持续的振动易使乘员感到不舒适和疲劳。故悬架还应当具有减振作用,使振动迅速衰减。为此,在许多结构形式的汽车悬架中都设有专门的减振器。车轮相对于车架和车身跳动时,车轮的运动轨迹应符合一定的要求,否则对汽车行驶性能有不利的影响。因此,悬架中某些传力构件同时还承担着使车轮按一定轨迹相对于车架和车身跳动的任务,因而这些传力构件还起导向作用的导向机构。在多数的轿车和客车上,为防止车身在转向行驶等情况下

5、发生大的横向倾斜,在悬架中还设有辅助弹性元件横向稳定杆。汽车悬架和悬挂质量、非悬挂质量构成了一个振动系统,该振动系统的特性很大程度上决定了汽车的行驶平顺性,并进一步影响到汽车的行驶车速、燃油经济性和运营经济性。该振动系统也决定了汽车承载系和行驶系许多零部件的动载,并进而影响到这些零件的使用寿命。此外,悬架对整车操纵稳定性、抗纵倾能力也起着决定性的作用。因而在设计悬架时必须考虑以下几个方面的要求: 1) 通过合理设计悬架的弹性特性及阻尼特性确保汽车具有良好的行驶平顺性,具有较低的振动频率、较小的振动加速度值和合适的减振性能,并能避免在悬架的压缩伸张行程极限点发生硬冲击,同时还要保证轮胎具有足够的

6、接地能力; 2) 合理设计导向机构,以确保车轮与车架或车身之间所有力和力矩的可靠传递,保证车轮跳动时车轮定位参数的变化不会过大,并且能满足汽车具有良好的操纵稳定性要求; 3) 导向机构的运动应与转向杆系的运动相协调,避免发生运动干涉,否则可能引起转向轮摆振;4) 侧倾中心及纵倾中心位置恰当,汽车转向时具有抗侧倾能力,汽车制动和加速时能保持车身的稳定,避免发生汽车在制动和加速时的车身纵倾(即所谓“点头”和“后仰”); 5) 悬架构件的质量要小尤其是其非悬挂部分的质量要尽量小; 6) 便于布置,在轿车设计中特别要考虑给发动机及行李箱留出足够的空间; 7) 所有零部件应具有足够的强度和使用寿命; 8

7、) 制造成本低; 9) 便于维修、保养。为了满足汽车具有良好的行使平顺性,要求由簧上质量与弹性元件组成的振动系统的固有频率应适应于合适的频段,并尽可能的低。前后悬架的固有频率的匹配应合理,对轿车,要求前悬架的固有频率略低于后悬架的固有频率,还要求尽量避免悬架撞击悬架。在簧上质量变化的情况下,车身的高度变化要小,因此,要用非线性弹性特性的悬架。汽车在不平的路面上行使时,由于悬架的弹性作用,使汽车产生垂直振动,为了迅速衰减这种振动和抑制车身、车轮的共振,减小车轮的振幅,悬架应装有减振器,并使之具有合理的阻尼。利用减振器的阻尼作用,使汽车的振动幅度连续减小,直至振动停止。要正确的选择悬架的方案参数,

8、在车轮上下跳动时,使主销的定位参数变化车架、车轮运动与到导向机构运动要协调,避免前轮摆振;汽车转向时,应使之具有不足转向特性。独立悬架导向杆系数铰接处多用橡胶的衬套,能隔绝车轮来自不平路面上的冲击向车身的传递。悬架设计的主要目的之一是确保汽车良好的行驶平顺性,也是汽车的重要使用性能之一,汽车行驶时振动越剧烈,则平顺性越差,不仅影响到成员的乘坐舒适性和货物的安全可靠的运输,还影响到汽车的多种使用性能的发挥和系统寿命,也影响汽车的燃油经济性和运输效率。由于汽车行驶平顺性涉及的对象是“路面-汽车-人”构成的系统,因此影响汽车行驶平顺性的主要因素是路面的不平(它是震动的起源)和汽车的悬架、轮胎、座椅、

9、车身等总成部件的特性-包括刚度、频率、阻尼和惯性参数(质量、转动惯量等)产生变化和破坏。为此,通过对影响汽车平顺性因素的分析,建立具有代表性的二由度汽车振动系统动力学模型,并运用随机振动理论,计算出悬架动挠度、车轮与路面间的相对动载荷、响应均方根值等参量,同时利用汽车主要参数数据,利用MATLAB对汽车平顺性进行仿真,通过仿真分析各种因素和主要参数对汽车平顺性的影响,以达到参数调整和优化设计的目的。此外,本文通过对汽车平顺性进行预估,可以提高汽车设计质量,缩短研发和设计周期,具有极其重要的理论意义和实用价值。第二章 前 、后悬架结构的选择2.1前、后悬架结构方案目前轿车的前后悬架采用的方案有:

10、前轮和后轮均采用独立悬架;前轮用独立悬架,后轮用非独立悬架。我所设计的是前轮采用独立悬架,后轮采用非独立悬架。因为独立悬架具有如下优点是:质量轻,减少了车身受到的冲击,并提高了车轮的地面附着力;可用刚度小的较软弹簧,改善汽车的舒适性;可以使发动机位置降低,汽车重心也得到降低,从而提高汽车的行驶稳定性;左右车轮单独跳动,互不相干,能减小车身的倾斜和震动。不过,独立悬架存在着结构复杂、成本高、维修不便的缺点;非独立悬架结构简单,成本低,维修方便,工作可靠等优点。本次设计为:前悬架为目前较为流行的麦弗逊式悬架,后悬架为近似于独立悬架的四连杆非独立悬架。如图21所示,麦弗逊式独立悬架也称滑柱连杆式悬架

11、,它是由滑动立柱和横摆臂组成。该结构可看做是烛式悬架的改进型,由于增加了横摆臂改善了滑动立柱的受力状况。滑柱摆臂式悬架将减振器作为引导车轮跳动的滑柱,螺旋弹簧与其装于一体。这种悬架将双横臂上臂去掉并以橡胶做支承,允许滑柱上端作少许角位移。内侧空间大,有利于发动机布置,并降低车子的重心。车轮上下运动时,主销轴线的角度会有变化,这是因为减振器下端支点随横摆臂摆动。以上问题可通过调整杆系设计布置合理得到解决。筒式减振器装在滑柱桶内,滑柱桶与转向节刚性连接,螺旋弹簧安装在滑柱桶及转向节总成上端的支承座内,弹簧上端通过软垫支承在车身连接的前簧上座内,滑柱桶的下端通过球铰链与悬架的横摆臂相连。当车轮上下运

12、动时,滑柱桶及转向节总成沿减振器活塞运动轴线移动,同时,滑柱桶的下支点还随横摆臂摆动。图2-1麦弗逊式独立悬架该悬架突出的优点是增大了两前轮内侧的空间,便于发动机和其他一些部件的布置;其缺点是滑动立柱摩擦和磨损较大。为减少摩擦通常是将螺旋弹簧中心线与滑柱中心线的布置不相重合。另外,还可将减振器导向座和活塞的摩擦表面用减磨材料制成,以减少磨损。但麦弗逊式悬架在使用中也有缺点,就是行驶在不平路面时,车轮容易自动转向,故驾驶者必须用力保持方向盘的方向,当受到剧烈冲击时,滑柱易造成弯曲,因而影响转向性能,减振器活塞杆受的侧向力较大,从而摩擦力大。麦弗逊式独立悬架是目前前置前驱动轿车和某些轻型客车首选的

13、较好的悬架结构形式。四连杆非独立悬架的结构简单,质量轻,制造成本低,维修方便,工作可靠;而四连杆非独立悬架近似于独立悬架,它分别通过上连杆,车桥横向拉杆,纵向控制臂与车身和整体式车桥相连接。前后方向的力由纵向控制臂承受;侧面的力由上连杆和车桥横向拉杆承受,悬架系统的刚性较好。弹性元件采用螺旋弹簧并配以筒式减振器,实现缓和路面不平产生的冲击载荷。通过设计来获得满意的操纵稳定性和平顺性。所以本次设计的前、后悬架分别为麦弗逊式独立悬架和四连杆非独立悬架。2.2 辅助元件2.2.1 横向稳定杆为了降低汽车固有振动频率以改善行驶平顺性,现代轿车悬架垂直刚度都较小,而使汽车的侧倾角刚度值也很小,使汽车转弯

14、时车身侧倾严重,影响了汽车的行驶稳定性。为此,现代汽车大多装有横向稳定杆如图2-3所示来加大悬架的侧倾角刚度来改善汽车行驶稳定性。恰当的选择前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装。图2-3横向稳定器汽车转弯是产生侧倾力矩,使内外侧车轮的负荷发生转移且影响车轮侧偏角刚度和车轮侧偏角的变化。前后轴车轮负荷的转移大小,主要取决于前后悬架的侧倾角刚度值。当前后悬架侧倾角刚度值大于后悬架的侧倾角刚度值时,前轴的负荷大于后轴车轮的负荷转移,并使前轮侧倾角大于后轮的侧倾角,以保证汽车具有不足转向特性。在汽车悬架上设

15、计横向稳定器,能增大前悬架的侧倾角刚度。2.2.2 导向机构导向机构的作用是传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,它由导向机构由控制摆臂式杆件组成。第三章 技术参数确定与计算3.1 主要技术参数表31整车基本参数尺寸参数轮距(mm)1500质心位置a (mm)1300b (mm)1340质量参数轴荷分配空载前轴(kg)761后轴(kg)739满载前轴(kg)1041后轴(kg)1009非簧载质量:前悬非簧载质量为65kg 后悬非簧载质量为60kg簧载质量(满载)前簧载质量满载轴荷质量非簧载质量104165976kg后簧载质量满载轴荷质量非簧载质量100960949

16、kg3.2 悬架性能参数确定1)自振频率(固有频率)选取轿车自振频率取值范围为0.71.6Hz。对于簧载质量大的车型取值偏向小的方向,对于簧载质量小的车型取值偏向大的方向。货车自振频率取值范围为1.54.0 Hz。北京现代SUV轿车要兼顾轿车和越野车的性能。因此,前悬架偏频为 1.20Hz,即=1.20Hz后悬架偏频为 1.30Hz,即=1.30Hz 2) 悬架刚度汽车前、后部分车身的自振频率和(亦称偏频)可用下式表示; (3-1) 上式中,、为前、后悬架的刚度(N/m);将、代入式(3-1),得 c97655428.3N/m 单边c94963251.7N/m 单边3.3 悬架静挠度静挠度:

17、(3-2) g为重力加速度,gmms=172.74mm=147.18mm3.4 悬架动挠度前后悬架自振频率的不同,决定了他们挠度数值不同。各类汽车动静挠度取值范围如下: 货 车 越野车 大客车 轿 车 所以, 3.5 悬架弹性特性曲线1-缓冲块复原点 2-复原行程缓冲块脱离支架3-主弹簧弹性特性曲线 4-复原行程5-压缩行程 6-缓冲块压缩期悬架特性曲线7-缓冲块压缩时开始接触弹性支架 8-额定载荷图 3-1悬架弹性特性曲线 第四章 弹性元件的设计计算4.1 前悬架弹簧(麦弗逊独立悬架)4.1.1 弹簧中径、钢丝直径及结构形式 :汽车满载静止时悬架上的载荷 (4-1) 单边:N弹簧指数,设计中

18、一般推荐取,常用的初选范围为C=58 所以,初选C=6曲度系数=1.25弹簧丝直径设计: (4-2)弹簧压缩时 类载荷范围内;许用切应力 MPa 取d=13mm D=Cd=78mm 因此D取80mm结构形式:端部并紧、不磨平、支撑圈为1圈查机械设计手册得。材料名称:硅锰合金弹簧钢丝(60Si2MnA)其节距为P=2740mm4.1.2 弹簧圈数弹簧工作圈数 i=6 7 初选 i=6螺旋弹簧的静挠度: (4-3) 式中 G-弹簧材料的剪切弹性模量,查表得 则 符合要求。4.2 后悬架弹簧(四连杆非独立悬架)4.2.1 弹簧中径、钢丝直径及结构形式:汽车满载静止时悬架上的载荷 单边:弹簧指数,设计

19、中一般推荐取,常用的初选范围为C=58 所以,初选C=6曲度系数=1.25弹簧丝直径设计: (4-4)弹簧压缩时 类载荷范围内;许用切应力 MPa 取d=13mm D=Cd=78mm 因此D取80mm结构形式:端部并紧、不磨平、支撑圈为1圈查机械设计手册得。材料名称:硅锰合金弹簧钢丝(60Si2Mn)其节距为P=2740mm4.2.2 弹簧圈数弹簧工作圈数 i=6 7 初选 i=6螺旋弹簧的静挠度: G弹簧材料的剪切弹性模量,查表得 则 符合要求。 图4-1 螺旋弹簧第五章 悬架导向机构的设计5.1 导向机构设计要求1)悬架上载荷变化时,保证轮距变化不超过,轮距变化大会引起轮胎早期磨损。 2)

20、悬架上载荷变化时,前轮定位参数有合理的变化特性,车轮不应产生纵向加速度。 3)汽车转弯行驶时,应使车身侧倾角小。在侧加速度下,车身侧倾角不大于,并使车轮与车身的倾斜同向,以增强不足转向效应。 4)汽车制动时,应使车身有抗前俯作用,加速时有抗后仰作用。5.2 麦弗逊独立悬架示意图图5-1 麦弗逊式独立悬架1)适用弹簧:螺旋弹簧2)主要使用车型:轿车前轮;3)车轮上下振动时前轮定位的变化:(1) 轮距、外倾角的变化比稍小;(2) 拉杆布置可在某种程度上进行调整。4)侧摆刚度:很高、不需稳定器;5)操纵稳定性:(1)横向刚度高;(2)在某种程度上可由调整外倾角的变化对操纵稳定性进行调整。5.3 导向

21、机构受力分析分析如图5-3所示麦弗逊式悬架受力简图可知,作用在导向套上的横向力F3,可根据图上的布置尺寸求得 (5-1)式中,为前轮上的静载荷减去前轴簧下质量的12。力越大,则作用在导向套上的摩擦力f越大(f为摩擦因数),这对汽车平顺性有不良影响。为了减小摩擦力,在导向套和活塞表面应用了减磨材料和特殊工艺。为了减小力,要求尺寸c+b越大越好,或者减小尺寸a。增大尺寸c+b使悬架占用空间增加,在布置上有困难。若采用增加减振器轴线倾斜度的方法,可达到减小尺寸a的目的,但也存在布置困难的问题。为此,在保持减振器轴线不变的条件下,常将图中的G点外伸至车轮内部,既可以达到缩短尺寸a的目的,又可获得较小的

22、甚至是负的主销偏移距,提高制动稳定性。移动G点后的主销轴线不再与减振器轴线重合。图5-2 悬架受力简图有时为了发挥弹簧反力减小横向力的作用,还将弹簧下端布置得尽量靠近车轮,从而造成弹簧轴线及减振器轴线成一角度。这就是麦弗逊式悬架中,主销轴线、滑柱轴线和弹簧轴线不共线的主要原因。5.4导向机构的布置参数5.4.1 侧倾中心在独立悬架中,前后侧倾中心连线称为侧倾轴线。侧倾轴线应大致与地面平行,且尽可能离地面高些。平行是为了使得在曲线行驶时前、后轴上的轮荷变化接近相等,从而保证中性转向特性;而尽可能高则是为了使车身的侧倾限制在允许范围内。然而,前悬架侧倾中心高度受到允许轮距变化的限制且几乎不可能超过

23、150mm。此外,在前轮驱动的车辆中,由于前轿轴荷大,且为驱动桥,故应尽可能使前轮轮荷变化小。因此,独立悬架(纵臂式悬架除外)的侧倾中心高度为:前悬架O120mm;后悬架80150mm。设计时首先要确定(与轮距变化有关的)前悬架的侧倾中心高度,然后确定后悬架的侧倾中心高度。当后悬架采用独立悬架时,其侧倾中心高度要稍大些。如果用钢板弹簧非独立悬架时,后悬架的侧倾中心高度要取得更大些。麦弗逊式独立悬架的侧倾中心由如图5-5所示方式得出。从悬架与车身的固定连接点E作活塞杆运动方向的垂直线并将下横臂线延长。两条线的交点即为P点。麦弗逊式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则

24、侧倾中心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。如加长下横臂,则可改善运动学特性。麦弗逊式独立悬架侧倾中心的高度可通过下式计算 (5-2)式中: 式中:;r=296mm;d=173mm; rs=40mm;bv=1500mm;c+o=513mm;带入上式求得为:图53麦弗逊式悬架的尺寸和P的计算法和图解法第六章 横向稳定杆的设计图6-1横向稳定杆为了降低汽车的固有频率以改善行使稳定性,现代汽车的垂直刚度较小,从而使汽车的侧倾角刚度值也很小,结果使汽车转弯时车身侧倾严重,影响了汽车行使的稳定性。为此,现代汽车大多都装有横向稳定杆来加大悬架的侧倾角刚度以改善汽车的行驶稳定性。横

25、向稳定杆在独立悬架中的典型安装方式如图7-1所示。当左右车轮同向等幅跳动时,横向稳定杆不起作用;当左右车轮有垂向的相对位移时,稳定杆受扭,发挥弹性元件的作用。横向稳定杆带来的好处除了可增加悬架的侧倾角刚度,从而减小汽车转向时车身的侧倾角外,恰当地选择前、后悬架的侧倾角刚度比值,也有助于使汽车获得所需要的不足转向特性。通常,在汽车的前、后悬架中都装有横向稳定杆,或者只在前悬架中安装。若只在后悬架中安装,则会使汽车趋于过多转向。横向稳定杆带来的不利因素有:当汽车在坑洼不平的路面行驶时,左右轮之间有垂向相对位移,由于横向稳定杆的作用,增加了车轮处的垂向刚度,回影响汽车的行驶平顺性。在有些悬架中,横向

26、稳定杆还兼起部分导向杆系的作用,其余情况下则在设计时应当注意避免与悬架的导向杆系发生运动干涉。为了缓冲隔振和降低噪声,横向稳定杆与车轮及车架的连接处均有橡胶支承。前悬架弹簧刚度的计算: 式中悬架刚度 (6-1) 根据结构需要,选定从悬架支撑点到螺旋弹簧中心之间的距离m=280mm,从悬架支撑点到轮胎中心之间的距离n=350mm。因此,前悬架每个弹簧的刚度为:后悬架弹簧刚度的计算:选定从悬架支撑点到螺旋弹簧中心之间的距离m=375mm,从悬架支撑点到轮胎中心之间的距离n=375mm。因此,后悬架每个弹簧的刚度为:前悬架的侧倾角刚度为:后悬架的侧倾角刚度为:由 (6-2)则稳定杆的角刚度: (6-

27、3)式中 E材料的弹性模量, d稳定杆的直径,mm P端点作用力,N f端点位移,mm I稳定杆的截面惯性矩,前悬架横向稳定杆直径d: 式中:E材料的弹性模量,E=2.06105MPa;L横向稳定杆两端点间的距离;所以本次设计横向稳定杆的直径d=22mm。 图6-2 横向稳定杆设计示意图第七章 减振器设计7.1 减振器概述悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中采用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入

28、另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。因面要调节弹性元件和减振器这一矛盾。 (1) 在压缩行程(车桥和车架相互靠近),减振器阻尼力较小,以便充分发挥弹性元件的弹性作用,缓和冲击。这时,弹性元件起主要作用。 (2) 在悬架伸张行程中(车桥和车架相互远离),减振器阻尼力应大,迅速减振。 (3) 当车桥(或车轮)与车

29、桥间的相对速度过大时,要求减振器能自动加大液流量,使阻尼力始终保持在一定限度之内,以避免承受过大的冲击载荷。7.2 减振器分类减振器按结构形式不同,分为摇臂式和筒式两种。虽然摇臂式减振器能在比较大的工作压力(1020MPa)条件下工作,但由于它的工作特性受活塞磨损和工作温度变化的影响大而遭淘汰。筒式减振器工作压力虽然仅为(2.55MPa),但是因为工作性能稳定而在现代汽车上得到广泛的应用。筒式减振器又分为单筒式、双筒式和充气筒式三种。双筒充气液力减振器具有工作性能稳定、干摩擦阻力小、噪声低、总长度短等优点,在乘用车上得到越来越多的应用。7.3 减振器主要性能参数 7.3.1 相对阻尼系数确定表

30、7.3.1汽车悬架的偏频及相对阻尼比空气弹簧钢制弹簧轿车载货汽车轿车载货汽车前悬架后悬架前悬架后悬架前悬架后悬架前悬架后悬架偏 频n/Hz0.50.80.81.21.01.21.31.5相对阻尼比0.80.60.80.60.40.20.40.3由表6.3.1初选前、后悬架平均阻尼系数:;压缩、伸张行程时的相对阻尼系数一般取: 本次设计取0.5倍。前悬架,伸张行程时的相对阻尼系数,压缩行程时的相对阻尼系数后悬架,伸张行程时的相对阻尼系数,压缩行程时的相对阻尼系数前悬架,伸张行程时的相对阻尼系数,压缩行程时的相对阻尼系数后悬架,伸张行程时的相对阻尼系数,压缩行程时的相对阻尼系数7.3.2 减震器阻

31、尼系数悬架相对阻尼比: (7-1)式中 悬架系统的垂直刚度; 悬挂部分的质量减震器阻尼系数 (7-2)前悬架,伸张行程时减振器阻尼平均行程时减振器阻尼后悬架,伸张行程时减振器阻尼 平均行程时减振器阻7.4 最大卸荷力7.4.1 前悬架的最大卸荷力为减小传到车身上的冲击力,当减振器活塞振动速度达到一定值时,减振器打开卸荷阀。此时的活塞速度称为卸荷速度vx, (7-3)式中,vx:卸荷速度,一般为0.150.30m/s 。A:车身振幅,取40mm;:悬架振动固有频率。m/s最大卸荷力 (7-4)伸张行程时的最大卸荷力平均行程时的最大卸荷力7.4.2 后悬架的最大卸荷力为减小传到车身上的冲击力,当减

32、振器活塞振动速度达到一定值时,减振器打开卸荷阀。此时的活塞速度称为卸荷速度vx, 式中,vx:卸荷速度,一般为0.150.30m/s 。A:车身振幅,取40mm;:悬架振动固有频率。m/s最大卸荷力 伸张行程时的最大卸荷力平均行程时的最大卸荷力7.5 筒式减振器主要尺寸7.5.1 筒式减振器工作直径可根据最大卸荷力和缸内最大压力强度来近似的求工作缸的直径 (7-5)式中 P-工作缸内最大允许压力,取 -连杆直径与缸筒直径之比,双筒式取 由汽车筒式减振器尺寸系列及技术条件可知:减振器的工作缸直径 有等几种。所以筒式减振器工作直径可取:减振器的工作缸直径为30mm减振器的工作缸直径为40mm图7-

33、1 悬架减振器安装示意图7.5.2 油筒直径贮油筒直径,壁厚取,材料可取钢 前贮油筒直径 后贮油筒直径 第八章 平顺性分析8.1平顺性概念行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。由于行驶平顺性主要是根据乘员的舒适程度来评价,又称为乘坐舒适性。8.2汽车的等效振动分析本设计根据目前现有的测试条件和计算精度以及建立整车模型要实现的目标的要求,建立了二自由度汽车振动系统动力学模型如图8-1。图8-1 二自汽车振动系统动力学模型这个系统能反映车轮部分在1015Hz范围产生高频共振时的动态特性,它对平顺性和车轮的接

34、地性有较大影响,更接近汽车悬挂系统的实际情况。图中,M为悬挂质量;m为非悬挂质量;K为弹簧刚度;C为减振器阻尼系数;Kt为轮胎刚度。车轮与车身垂直位移坐标为z、s,坐标原点选在各自的平衡位置,其运动方程为:无阻尼自由振动时,运动方程变成由运动方程可以看出,M与m的振动是相互耦合的。若m不动(s=0)则得这相当于只有车身质量M的单自由度无阻尼自由振动。其固有圆频率同样,若M不动(Z=0),相当于车轮质量m作单自由度无阻尼振动,于是得车轮部分固有频率0与t是双质量系统,只有单独一个质量振动时的部分频率(偏频)。在无阻尼自由振动时,设两个质量以相同的圆频率和相角作简谐振动,振幅为z10、z20则其解

35、为 将上面两个解代入微分方程组得将、代入上式可得此方程组有非零解的条件是z10和z20的系数行列式为零即上式称为系统的频率方程或特征方程,它的两个跟为双质量主频率1和2的平方车身与车轮两个自由度系统的主振型如图-1。在强迫振动情况下,激振频率接近1时产生的低频共振,按一阶主振型振动,车身质量M的振幅比车轮质量m的振幅大将近10倍,所以主要是车身质量M在振动,称为车身型振动。当激振频率接近2时,产生高频共振,按二阶主振型振动,此时车轮质量m的振幅比车身质量M的振幅大将近100倍,称为车轮型振动。此时,由于车身基本不动,所以可将两个自由度系统简化如图8-2所示车轮部分的单质量系统,来分析车轮部分在

36、高频共振区的振动。图8-2 车轮部分单质量系统此时,质量m的运动方程为将各复振幅代上式,得车轮位移z1对q的频率响应函数为将上式分子、分母除以K+Kt,并把车轮部分固有频率t,车轮部分阻尼比t带入上式,则得其幅频特性为在高频共振=t时,车轮加速度均方根值谱正比于幅频特性式中,车轮部分固有频率车轮部分阻尼比可见,降低轮胎刚度Kt能使1下降和t加大,这是减小车轮部分高频共振时加速度的有效方法;降低非悬挂质量m使和t都加大,车轮部分高频共振时的加速度基本不变,但车轮部分动载m下降,对降低相对动载有利。8.3车身加速度的幅频特性对该车悬架进行平顺性分析,在车轮和车身垂直方向上建立两自由度的平顺性分析模

37、型。根据公式其中,为刚度比,为质量比:8.4 相对动载Fd/G,对q的幅频特性车轮动载,静载。对q的频率响应函数:输出图形为:图7-3车身加速度的幅频特性曲线图图7-4相对动载的幅频特性曲线图8.5影响平顺性的因素由于汽车行驶平顺性涉及的对象是“路面-汽车-人”构成的系统,因此影响汽车行驶平顺性的主要因素是路面的不平(它是震动的起源)和汽车的悬架、轮胎、座椅、车身等总成部件的特性-包括刚度、频率、阻尼和惯性参数(质量、转动惯量等)产生变化和破坏。这些参数是根据各种不同使用要求的车辆设计的,在使用时要保证不破坏这些参数。例如悬架系统的钢板弹簧片间的润滑不良,等于增加了悬架刚度;减震器漏油等于减小

38、了悬架系统的阻尼等。第9章 结 论本次毕业设计给我提供了一次非常难得的理论与实际相结合的机会,通过这次对北京现代SUV轿车悬架的设计,我将理论知识和实际设计结合了起来,锻炼了我的综合运用所学的专业基础知识来解决实际工程问题的能力,同时也提高我查阅文献资料、设计手册、设计规范以及电脑制图等其他专业能力的水平,而且通过对整体的掌控,对局部的取舍,以及对细节的斟酌处理,都使我的综合能力得到了锻炼与提高。根据计算数据,我选择了切实可行的方案,前悬架采用用了目前较流行的麦弗逊式独立悬架,后悬架则采用平顺性更加出色的双叉骨独立悬架,前、后悬架的减振器均采用双向作用式筒式减振器。这种设计有利于提高汽车行使稳

39、定性与乘坐舒适性。考虑到轿车的使用条件增强汽车乘坐舒适性,我选用了螺旋弹簧做为弹性元件,其结构简单、制造方便及有较高的比能容量,在导向机构大摆动量下任具有保持车轮定位角的能力,因此得到了广泛采用。为了降低汽车的固有振动频率以改善行驶平顺性,增强悬架的垂直刚度值,减小汽车在转弯时车身的侧倾,我在前悬架增加了横向稳定杆来增强汽车的行驶稳定性。考虑到现代人对汽车的行驶平顺性与乘坐舒适性的要求越来越高,我利用MATLAB软件进行平顺性分析,保证汽车的平顺性达与乘坐舒适性的到要求。历时四个月的毕业设计工作即将结束了。本次对北京现代SUV轿车悬架的设计结构合理,完成了指导教师所下达的任务量,达到了预期目标

40、。为我今后走向工作岗位打下了坚实的基础。参考文献1 刘惟信.汽车设计M.北京:清华大学出版社,2001 2 余志生.汽车理论M.北京:机械出版社,2000 3 陈家瑞.汽车构造M.北京:人民交通出版社,19994 王望予.汽车设计M.北京:机械工业出版社,20045 崔心存.现代汽车新技术M.北京:人民交通出版社,20016 吴宗泽.机械设计师手册M.北京:机械工程出版社,20027 细川武志编,魏朗译.汽车构造图册M.北京:人民交通出版社,20048 龚微寒.汽车现代设计制造M.北京:人民交通出版社,19959 赵学敏.汽车底盘构造与维修M.北京:国防工业出版社,2003,110屠卫星.汽车

41、底盘构造与维修M.北京:人民交通出版社,2001,811宋 森.汽车底盘维修实例M.北京:机械工业出版社,200212高树新.汽车行驶平顺性评价方法述评.总后汽车试验场期刊J.2001(3)13蒋立盛.汽车设计手册 整车 底盘卷(4.4,4.5)长春汽车研究所,1998,514Yu F., Crolla D.A. A State Observer Design for an AdaptiveVehicle SuspensionM.Vehicle Suspension Dynamic, 1998 15Griffin,M.J. Evaluation of vibration with respect to human response. Warrendale PA: SAE paperJ.1986(47) 16张洪图.汽车构造底盘部分M.北京:北京理工大学出版社,1996,9致 谢首先要感谢辽宁工业大学给我们提供了四年的学习和生活

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知得利文库网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号-8 |  经营许可证:黑B2-20190332号 |   黑公网安备:91230400333293403D

© 2020-2023 www.deliwenku.com 得利文库. All Rights Reserved 黑龙江转换宝科技有限公司 

黑龙江省互联网违法和不良信息举报
举报电话:0468-3380021 邮箱:hgswwxb@163.com